BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21487632)

  • 1. Computational evidence for the substrate-assisted catalytic mechanism of O-GlcNAcase. A DFT investigation.
    Bottoni A; Pietro Miscione G; Calvaresi M
    Phys Chem Chem Phys; 2011 May; 13(20):9568-77. PubMed ID: 21487632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational evidence for the catalytic mechanism of caspase-7. A DFT investigation.
    Miscione GP; Calvaresi M; Bottoni A
    J Phys Chem B; 2010 Apr; 114(13):4637-45. PubMed ID: 20225841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational evidence for the catalytic mechanism of glutaminyl cyclase. A DFT investigation.
    Calvaresi M; Garavelli M; Bottoni A
    Proteins; 2008 Nov; 73(3):527-38. PubMed ID: 18470930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants.
    Cetinbaş N; Macauley MS; Stubbs KA; Drapala R; Vocadlo DJ
    Biochemistry; 2006 Mar; 45(11):3835-44. PubMed ID: 16533067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme molecular mechanism as a starting point to design new inhibitors: a theoretical study of O-GlcNAcase.
    Lameira J; Alves CN; Tuñón I; Martí S; Moliner V
    J Phys Chem B; 2011 May; 115(20):6764-75. PubMed ID: 21542586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical DFT investigation of the lysozyme mechanism: computational evidence for a covalent intermediate pathway.
    Bottoni A; Miscione GP; De Vivo M
    Proteins; 2005 Apr; 59(1):118-30. PubMed ID: 15688446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed comparative analysis of the catalytic mechanisms of beta-N-acetylglucosaminidases from families 3 and 20 of glycoside hydrolases.
    Vocadlo DJ; Withers SG
    Biochemistry; 2005 Sep; 44(38):12809-18. PubMed ID: 16171396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems?
    Calvaresi M; Bottoni A; Garavelli M
    J Phys Chem B; 2007 Jun; 111(23):6557-70. PubMed ID: 17508740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis.
    Fox JM; Dmitrenko O; Liao LA; Bach RD
    J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing synergy between two catalytic strategies in the glycoside hydrolase O-GlcNAcase using multiple linear free energy relationships.
    Greig IR; Macauley MS; Williams IH; Vocadlo DJ
    J Am Chem Soc; 2009 Sep; 131(37):13415-22. PubMed ID: 19715310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic studies on the formation of glycosidase-substrate and glycosidase-inhibitor covalent intermediates.
    Brás NF; Moura-Tamames SA; Fernandes PA; Ramos MJ
    J Comput Chem; 2008 Nov; 29(15):2565-74. PubMed ID: 18470964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of substrate specificity and catalysis of the β-secretase (BACE1) enzyme.
    Barman A; Schürer S; Prabhakar R
    Biochemistry; 2011 May; 50(20):4337-49. PubMed ID: 21500768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of the glycosylation step catalyzed by Golgi alpha-mannosidase II: a QM/MM metadynamics investigation.
    Petersen L; Ardèvol A; Rovira C; Reilly PJ
    J Am Chem Soc; 2010 Jun; 132(24):8291-300. PubMed ID: 20504027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of glycoside hydrolysis: A comparative QM/MM molecular dynamics analysis for wild type and Y69F mutant retaining xylanases.
    Soliman ME; Pernía JJ; Greig IR; Williams IH
    Org Biomol Chem; 2009 Dec; 7(24):5236-44. PubMed ID: 20024120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of 1,6-anhydrosugar formation from phenyl D-glucosides under basic condition: reasons for higher reactivity of β-anomer.
    Hosoya T; Nakao Y; Sato H; Sakaki S
    J Org Chem; 2010 Dec; 75(24):8400-9. PubMed ID: 21082769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic itinerary in 1,3-1,4-β-glucanase unraveled by QM/MM metadynamics. Charge is not yet fully developed at the oxocarbenium ion-like transition state.
    Biarnés X; Ardèvol A; Iglesias-Fernández J; Planas A; Rovira C
    J Am Chem Soc; 2011 Dec; 133(50):20301-9. PubMed ID: 22044419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational investigation of hydrogen abstraction from 2-aminoethanol by the 1,5-dideoxyribose-5-yl radical: a model study of a reaction occurring in the active site of ethanolamine ammonia lyase.
    Semialjac M; Schwarz H
    Chemistry; 2004 Jun; 10(11):2781-8. PubMed ID: 15195308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.