BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21487664)

  • 1. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model.
    Tavana H; Zamankhan P; Christensen PJ; Grotberg JB; Takayama S
    Biomed Microdevices; 2011 Aug; 13(4):731-42. PubMed ID: 21487664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.
    Huh D; Fujioka H; Tung YC; Futai N; Paine R; Grotberg JB; Takayama S
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18886-91. PubMed ID: 18006663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.
    Yalcin HC; Perry SF; Ghadiali SN
    J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.
    Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels.
    Viola HL; Vasani V; Washington K; Lee JH; Selva C; Li A; Llorente CJ; Murayama Y; Grotberg JB; Romanò F; Takayama S
    Lab Chip; 2024 Jan; 24(2):197-209. PubMed ID: 38093669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of liquid-epithelium interactions in pulmonary airways.
    Ghadiali SN; Gaver DP
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):232-43. PubMed ID: 18511356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of liquid plugs of buffer and surfactant solutions in a micro-engineered pulmonary airway model.
    Tavana H; Kuo CH; Lee QY; Mosadegh B; Huh D; Christensen PJ; Grotberg JB; Takayama S
    Langmuir; 2010 Mar; 26(5):3744-52. PubMed ID: 20017471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale distribution and dynamic surface tension of pulmonary surfactant normalize the recruitment of asymmetric bifurcating airways.
    Yamaguchi E; Nolan LP; Gaver DP
    J Appl Physiol (1985); 2017 May; 122(5):1167-1178. PubMed ID: 28057816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.
    Naire S; Jensen OE
    J Appl Physiol (1985); 2005 Aug; 99(2):458-71. PubMed ID: 15802368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.
    Dailey HL; Ricles LM; Yalcin HC; Ghadiali SN
    J Appl Physiol (1985); 2009 Jan; 106(1):221-32. PubMed ID: 19008489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unusual symmetric reopening effect induced by pulmonary surfactant.
    Yamaguchi E; Giannetti MJ; Van Houten MJ; Forouzan O; Shevkoplyas SS; Gaver DP
    J Appl Physiol (1985); 2014 Mar; 116(6):635-44. PubMed ID: 24458752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble.
    Pillert JE; Gaver DP
    Biophys J; 2009 Jan; 96(1):312-27. PubMed ID: 18849416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels.
    Viola HL; Vasani V; Washington K; Lee JH; Selva C; Li A; Llorente CJ; Murayama Y; Grotberg JB; Romanò F; Takayama S
    bioRxiv; 2023 May; ():. PubMed ID: 37292706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening.
    Kay SS; Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2004 Jul; 97(1):269-76. PubMed ID: 15004001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bioinspired microfluidic model of liquid plug-induced mechanical airway injury.
    Song JW; Paek J; Park KT; Seo J; Huh D
    Biomicrofluidics; 2018 Jul; 12(4):042211. PubMed ID: 29887935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of recruitment and injury in a heterogeneous airway network model.
    Stewart PS; Jensen OE
    J R Soc Interface; 2015 Oct; 12(111):20150523. PubMed ID: 26423440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The mucociliary system of the lung--role of surfactants].
    Gehr P; Im Hof V; Geiser M; Schürch S
    Schweiz Med Wochenschr; 2000 May; 130(19):691-8. PubMed ID: 10846763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: a model of airway closure.
    Halpern D; Grotberg JB
    J Biomech Eng; 1993 Aug; 115(3):271-7. PubMed ID: 8231142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4.
    Jacob AM; Gaver DP
    J Appl Physiol (1985); 2012 Nov; 113(9):1377-87. PubMed ID: 22898551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Airway Models to Study Liquid Plug Splitting at Bifurcations: Effects of Orientation and Airway Size.
    Copploe A; Vatani M; Amini R; Choi JW; Tavana H
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 30029232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.