BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 21488102)

  • 41. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone.
    Rüdiger S; Schneider-Mergener J; Bukau B
    EMBO J; 2001 Mar; 20(5):1042-50. PubMed ID: 11230128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function.
    Suzuki H; Ikeda A; Tsuchimoto S; Adachi K; Noguchi A; Fukumori Y; Kanemori M
    J Biol Chem; 2012 Jun; 287(23):19275-83. PubMed ID: 22496372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates.
    Szabo A; Korszun R; Hartl FU; Flanagan J
    EMBO J; 1996 Jan; 15(2):408-17. PubMed ID: 8617216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biophysical characterization of two different stable misfolded monomeric polypeptides that are chaperone-amenable substrates.
    Natalello A; Mattoo RU; Priya S; Sharma SK; Goloubinoff P; Doglia SM
    J Mol Biol; 2013 Apr; 425(7):1158-71. PubMed ID: 23306033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system.
    Han W; Christen P
    J Biol Chem; 2003 May; 278(21):19038-43. PubMed ID: 12654915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S
    J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP.
    Noguchi A; Ikeda A; Mezaki M; Fukumori Y; Kanemori M
    J Bacteriol; 2014 May; 196(9):1694-703. PubMed ID: 24532774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Action of the Hsp70 chaperone system observed with single proteins.
    Nunes JM; Mayer-Hartl M; Hartl FU; Müller DJ
    Nat Commun; 2015 Feb; 6():6307. PubMed ID: 25686738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation.
    Zietkiewicz S; Krzewska J; Liberek K
    J Biol Chem; 2004 Oct; 279(43):44376-83. PubMed ID: 15302880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones.
    Laufen T; Mayer MP; Beisel C; Klostermeier D; Mogk A; Reinstein J; Bukau B
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5452-7. PubMed ID: 10318904
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK.
    Liberek K; Marszalek J; Ang D; Georgopoulos C; Zylicz M
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2874-8. PubMed ID: 1826368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32.
    Gamer J; Bujard H; Bukau B
    Cell; 1992 May; 69(5):833-42. PubMed ID: 1534276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli.
    Tomoyasu T; Ogura T; Tatsuta T; Bukau B
    Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone.
    Gässler CS; Buchberger A; Laufen T; Mayer MP; Schröder H; Valencia A; Bukau B
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15229-34. PubMed ID: 9860951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB.
    Mogk A; Tomoyasu T; Goloubinoff P; Rüdiger S; Röder D; Langen H; Bukau B
    EMBO J; 1999 Dec; 18(24):6934-49. PubMed ID: 10601016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ.
    Goffin L; Georgopoulos C
    Mol Microbiol; 1998 Oct; 30(2):329-40. PubMed ID: 9791178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins.
    Jordan R; McMacken R
    J Biol Chem; 1995 Mar; 270(9):4563-9. PubMed ID: 7876226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division.
    Sugimoto S; Saruwatari K; Higashi C; Sonomoto K
    Microbiology (Reading); 2008 Jul; 154(Pt 7):1876-1885. PubMed ID: 18599817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein.
    Karzai AW; McMacken R
    J Biol Chem; 1996 May; 271(19):11236-46. PubMed ID: 8626673
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The roles of the two zinc binding sites in DnaJ.
    Linke K; Wolfram T; Bussemer J; Jakob U
    J Biol Chem; 2003 Nov; 278(45):44457-66. PubMed ID: 12941935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.