BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21488166)

  • 1. Self-assembly of lead chalcogenide nanocrystals.
    Quan Z; Valentin-Bromberg L; Loc WS; Fang J
    Chem Asian J; 2011 May; 6(5):1126-36. PubMed ID: 21488166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications.
    Fu H; Tsang SW
    Nanoscale; 2012 Apr; 4(7):2187-201. PubMed ID: 22382898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystal-micelle: synthesis, self-assembly and application.
    Fan H
    Chem Commun (Camb); 2008 Mar; (12):1383-94. PubMed ID: 18338033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties.
    Kovalenko MV; Schaller RD; Jarzab D; Loi MA; Talapin DV
    J Am Chem Soc; 2012 Feb; 134(5):2457-60. PubMed ID: 22239647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant-free self-assembly of nanocrystals into ellipsoidal architectures.
    Peng B; Chen D; Deng Z; Wen T; Meng X; Ren X; Ren J; Tang F
    Chemphyschem; 2010 Dec; 11(17):3744-51. PubMed ID: 21077087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead chalcogenide nanotubes synthesized by biomolecule-assisted self-assembly of nanocrystals at room temperature.
    Tong H; Zhu YJ; Yang LX; Li L; Zhang L
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7739-42. PubMed ID: 17061306
    [No Abstract]   [Full Text] [Related]  

  • 9. Controlled synthesis and self-assembly of highly monodisperse Ag and Ag(2)S nanocrystals.
    Li P; Peng Q; Li Y
    Chemistry; 2011 Jan; 17(3):941-6. PubMed ID: 21226111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics.
    Spinicelli P; Mahler B; Buil S; Quélin X; Dubertret B; Hermier JP
    Chemphyschem; 2009 Apr; 10(6):879-82. PubMed ID: 19294684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-induced optical absorption properties of semiconductor nanocrystals.
    Zhang A; Luo S; Ouyang G; Yang G
    J Chem Phys; 2013 Jun; 138(24):244702. PubMed ID: 23822259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure.
    Dai Q; Wang Y; Zhang Y; Li X; Li R; Zou B; Seo J; Wang Y; Liu M; Yu WW
    Langmuir; 2009 Oct; 25(20):12320-4. PubMed ID: 19522486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure/processing relationships of highly ordered lead salt nanocrystal superlattices.
    Hanrath T; Choi JJ; Smilgies DM
    ACS Nano; 2009 Oct; 3(10):2975-88. PubMed ID: 19728701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals.
    Singh S; Bozhilov K; Mulchandani A; Myung N; Chen W
    Chem Commun (Camb); 2010 Mar; 46(9):1473-5. PubMed ID: 20162152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties.
    Zhou H; Fan T; Han T; Li X; Ding J; Zhang D; Guo Q; Ogawa H
    Nanotechnology; 2009 Feb; 20(8):085603. PubMed ID: 19417451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of shape-controlled nanocrystals by depletion attraction.
    Zanella M; Bertoni G; Franchini IR; Brescia R; Baranov D; Manna L
    Chem Commun (Camb); 2011 Jan; 47(1):203-5. PubMed ID: 20886137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes.
    Engtrakul C; Kim YH; Nedeljković JM; Ahrenkiel SP; Gilbert KE; Alleman JL; Zhang SB; Mićić OI; Nozik AJ; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25153-7. PubMed ID: 17165958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices.
    Choi JJ; Bian K; Baumgardner WJ; Smilgies DM; Hanrath T
    Nano Lett; 2012 Sep; 12(9):4791-8. PubMed ID: 22888985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals.
    de Mello Donegá C; Liljeroth P; Vanmaekelbergh D
    Small; 2005 Dec; 1(12):1152-62. PubMed ID: 17193409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.