These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation. Cadefau JA; Parra J; Cussó R; Heine G; Pette D Pflugers Arch; 1993 Sep; 424(5-6):529-37. PubMed ID: 8255737 [TBL] [Abstract][Full Text] [Related]
6. Effect of hindlimb unweighting on anaerobic metabolism in rat skeletal muscle. Marsh DR; Campbell CB; Spriet LL J Appl Physiol (1985); 1992 Apr; 72(4):1304-10. PubMed ID: 1592719 [TBL] [Abstract][Full Text] [Related]
7. Glycogen content has no effect on skeletal muscle glycogenolysis during short-term tetanic stimulation. Spriet LL; Berardinucci L; Marsh DR; Campbell CB; Graham TE J Appl Physiol (1985); 1990 May; 68(5):1883-8. PubMed ID: 2361890 [TBL] [Abstract][Full Text] [Related]
8. High physiological levels of epinephrine do not enhance muscle glycogenolysis during tetanic stimulation. Chesley A; Dyck DJ; Spriet LL J Appl Physiol (1985); 1994 Aug; 77(2):956-62. PubMed ID: 8002553 [TBL] [Abstract][Full Text] [Related]
9. Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men. Spriet LL; Söderlund K; Bergström M; Hultman E J Appl Physiol (1985); 1987 Feb; 62(2):616-21. PubMed ID: 3558221 [TBL] [Abstract][Full Text] [Related]
10. Activation of glycogen phosphorylase by electrical stimulation of isolated fast-twitch and slow-twitch muscles from rat. Chasiotis D; Edström L; Sahlin K; Sjöholm H Acta Physiol Scand; 1985 Jan; 123(1):43-7. PubMed ID: 3969833 [TBL] [Abstract][Full Text] [Related]
11. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation. Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789 [TBL] [Abstract][Full Text] [Related]
12. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Richter EA; Ruderman NB; Gavras H; Belur ER; Galbo H Am J Physiol; 1982 Jan; 242(1):E25-32. PubMed ID: 7058885 [TBL] [Abstract][Full Text] [Related]
13. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Ren JM; Broberg S; Sahlin K; Hultman E Acta Physiol Scand; 1990 Jul; 139(3):467-74. PubMed ID: 2239350 [TBL] [Abstract][Full Text] [Related]
14. Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans. Hultman E; Spriet LL J Physiol; 1986 May; 374():493-501. PubMed ID: 3746702 [TBL] [Abstract][Full Text] [Related]
15. Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction. Bassols AM; Carreras J; Cussó R Biochem J; 1986 Dec; 240(3):747-51. PubMed ID: 3827864 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic energy release in skeletal muscle during electrical stimulation in men. Spriet LL; Söderlund K; Bergström M; Hultman E J Appl Physiol (1985); 1987 Feb; 62(2):611-5. PubMed ID: 3558220 [TBL] [Abstract][Full Text] [Related]
17. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. Hultman E; Sjöholm H J Physiol; 1983 Dec; 345():525-32. PubMed ID: 6663511 [TBL] [Abstract][Full Text] [Related]
18. Energy cost and metabolic regulation during intermittent and continuous tetanic contractions in human skeletal muscle. Spriet LL; Soderlund K; Hultman E Can J Physiol Pharmacol; 1988 Feb; 66(2):134-9. PubMed ID: 3370544 [TBL] [Abstract][Full Text] [Related]
20. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state. Ortenblad N; Macdonald WA; Sahlin K Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]