These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21488495)

  • 1. Transformation of diphenylarsinic acid in agricultural soils.
    Maejima Y; Arao T; Baba K
    J Environ Qual; 2011; 40(1):76-82. PubMed ID: 21488495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced transformation of diphenylarsinic acid in soil under sulfate-reducing conditions.
    Guan L; Hisatomi S; Fujii K; Nonaka M; Harada N
    J Hazard Mater; 2012 Nov; 241-242():355-62. PubMed ID: 23069334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction.
    Zhu M; Tu C; Hu X; Zhang H; Zhang L; Wei J; Li Y; Luo Y; Christie P
    Sci Total Environ; 2016 Nov; 569-570():1579-1586. PubMed ID: 27395078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of arylarsenic compounds by microorganisms.
    Nakamiya K; Nakayama T; Ito H; Edmonds JS; Shibata Y; Morita M
    FEMS Microbiol Lett; 2007 Sep; 274(2):184-8. PubMed ID: 17697081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of aromatic arsenicals from soil contaminated with diphenylarsinic acid by rice.
    Arao T; Maejima Y; Baba K
    Environ Sci Technol; 2009 Feb; 43(4):1097-101. PubMed ID: 19320164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.
    Hisatomi S; Guan L; Nakajima M; Fujii K; Nonaka M; Harada N
    J Hazard Mater; 2013 Nov; 262():25-30. PubMed ID: 24007995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and desorption characteristics of diphenylarsenicals in two contrasting soils.
    Wang A; Li S; Teng Y; Liu W; Wu L; Zhang H; Huang Y; Luo Y; Christie P
    J Environ Sci (China); 2013 Jun; 25(6):1172-9. PubMed ID: 24191607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of diphenylarsinic acid to arsenic acid by novel soil bacteria isolated from contaminated soil.
    Harada N; Takagi K; Baba K; Fujii K; Iwasaki A
    Biodegradation; 2010 Jun; 21(3):491-9. PubMed ID: 19949836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.
    Guan L; Shiiya A; Hisatomi S; Fujii K; Nonaka M; Harada N
    Biodegradation; 2015 Feb; 26(1):29-38. PubMed ID: 25228086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties.
    Wang AN; Teng Y; Hu XF; Wu LH; Huang YJ; Luo YM; Christie P
    Sci Total Environ; 2016 Jan; 541():348-355. PubMed ID: 26410709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of diphenylarsinic-acid-contaminated soil by Pteris vittata associated with Phyllobacterium myrsinacearum RC6b.
    Teng Y; Feng S; Ren W; Zhu L; Ma W; Christie P; Luo Y
    Int J Phytoremediation; 2017 May; 19(5):463-469. PubMed ID: 27739905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting effects of iron reduction on thionation of diphenylarsinic acid in a biostimulated Acrisol.
    Zhu M; Luo Y; Cheng N; Yang R; Zhang J; Zhang M; Christie P
    Environ Sci Pollut Res Int; 2020 May; 27(14):16646-16655. PubMed ID: 32130633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental behavior of the chiral aryloxyphenoxypropionate herbicide diclofop-methyl and diclofop: enantiomerization and enantioselective degradation in soil.
    Diao J; Xu P; Wang P; Lu Y; Lu D; Zhou Z
    Environ Sci Technol; 2010 Mar; 44(6):2042-7. PubMed ID: 20155898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal.
    Arao T; Maejima Y; Baba K
    Environ Pollut; 2011 Oct; 159(10):2449-53. PubMed ID: 21782301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural attenuation potential of phenylarsenicals in anoxic groundwaters.
    Hempel M; Daus B; Vogt C; Weiss H
    Environ Sci Technol; 2009 Sep; 43(18):6989-95. PubMed ID: 19806732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments.
    Davis JW; Gonsior S; Marty G; Ariano J
    Water Res; 2005 Mar; 39(6):1075-84. PubMed ID: 15766961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation and consumption of odorous compounds in feedlot soils under aerobic, fermentative, and anaerobic respiratory conditions.
    Miller DN
    J Anim Sci; 2001 Oct; 79(10):2503-12. PubMed ID: 11721828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption and degradation of contaminants of emerging concern in soils under aerobic and anaerobic conditions.
    Biel-Maeso M; González-González C; Lara-Martín PA; Corada-Fernández C
    Sci Total Environ; 2019 May; 666():662-671. PubMed ID: 30812000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities.
    Xu L; Wu X; Wang S; Yuan Z; Xiao F; Yang M; Jia Y
    J Hazard Mater; 2016 Jan; 301():538-46. PubMed ID: 26434533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence and fate of 17beta-estradiol and testosterone in agricultural soils.
    Fan Z; Casey FX; Hakk H; Larsen GL
    Chemosphere; 2007 Mar; 67(5):886-95. PubMed ID: 17223163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.