BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21488509)

  • 21. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants.
    Wei X; Viadero RC; Bhojappa S
    Water Res; 2008 Jul; 42(13):3275-84. PubMed ID: 18490048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective copper recovery by membrane distillation and adsorption system from synthetic acid mine drainage.
    Ryu S; Naidu G; Moon H; Vigneswaran S
    Chemosphere; 2020 Dec; 260():127528. PubMed ID: 32682132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manganese removal processes and geochemical behavior in residues from passive treatment of mine drainage.
    Le Bourre B; Neculita CM; Coudert L; Rosa E
    Chemosphere; 2020 Nov; 259():127424. PubMed ID: 32599383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study on the treatment of acid mine drainage containing heavy metals with domestic waste pyrolysis ash.
    Li X; Guo Y; Cai J; Bao W
    Water Sci Technol; 2022 Jun; 85(11):3225-3239. PubMed ID: 35704407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treatment of mine drainage using permeable reactive barrers: column experiments.
    Waybrant KR; Ptacek CJ; Blowes DW
    Environ Sci Technol; 2002 Mar; 36(6):1349-56. PubMed ID: 11944692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.
    Tolonen ET; Sarpola A; Hu T; Rämö J; Lassi U
    Chemosphere; 2014 Dec; 117():419-24. PubMed ID: 25193795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of heavy metals in an abandoned mine drainage via ozone oxidation: a pilot-scale operation.
    Seo SH; Sung BW; Kim GJ; Chu KH; Um CY; Yun SL; Ra YH; Ko KB
    Water Sci Technol; 2010; 62(9):2115-20. PubMed ID: 21045339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of heavy metals from mine waters by natural zeolites.
    Wingenfelder U; Hansen C; Furrer G; Schulin R
    Environ Sci Technol; 2005 Jun; 39(12):4606-13. PubMed ID: 16047799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abatement of circumneutral mine drainage by Co-treatment with secondary municipal wastewater.
    Spellman CD; Tasker TL; Strosnider WHJ; Goodwill JE
    J Environ Manage; 2020 Oct; 271():110982. PubMed ID: 32579529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron-mineral accretion from acid mine drainage and its application in passive treatment.
    Florence K; Sapsford DJ; Johnson DB; Kay CM; Wolkersdorfer C
    Environ Technol; 2016; 37(11):1428-40. PubMed ID: 26675674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges.
    Suthar S; Nema AK; Chabukdhara M; Gupta SK
    J Hazard Mater; 2009 Nov; 171(1-3):1088-95. PubMed ID: 19616893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada.
    Lishman L; Smyth SA; Sarafin K; Kleywegt S; Toito J; Peart T; Lee B; Servos M; Beland M; Seto P
    Sci Total Environ; 2006 Aug; 367(2-3):544-58. PubMed ID: 16697441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater.
    Bai L; Wang C; Pei Y; Zhao J
    Environ Technol; 2014; 35(21-24):2752-9. PubMed ID: 25176310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eco-sustainable passive treatment for mine waters: Full-scale and long-term demonstration.
    Orden S; Macías F; Cánovas CR; Nieto JM; Pérez-López R; Ayora C
    J Environ Manage; 2021 Feb; 280():111699. PubMed ID: 33272656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of coal mining waste for the removal of acidity and metal ions Al (III), Fe (III) and Mn (II) in acid mine drainage.
    Geremias R; Laus R; Macan JM; Pedrosa RC; Laranjeira MC; Silvano J; Fávere FV
    Environ Technol; 2008 Aug; 29(8):863-9. PubMed ID: 18724641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Treatment of iron(II)-rich acid mine water with limestone and oxygen.
    Mohajane GB; Maree JP; Panichev N
    Water Sci Technol; 2014; 70(2):209-17. PubMed ID: 25051466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system.
    Prasad D; Henry JG
    Environ Technol; 2009 Feb; 30(2):151-60. PubMed ID: 19278156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.