These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21488511)

  • 1. Carbon, nitrogen, and phosphorus distribution in particle size-fractionated separated pig and cattle slurry.
    Peters K; Hjorth M; Jensen LS; Magid J
    J Environ Qual; 2011; 40(1):224-32. PubMed ID: 21488511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry.
    Popovic O; Hjorth M; Jensen LS
    Environ Technol; 2012 Sep; 33(16-18):2119-31. PubMed ID: 23240207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction.
    Popovic O; Jensen LS
    Water Res; 2012 Aug; 46(12):3849-58. PubMed ID: 22591817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ammonia stripping and use of additives on separation of solids, phosphorus, copper and zinc from liquid fractions of animal slurries.
    Cattaneo M; Finzi A; Guido V; Riva E; Provolo G
    Sci Total Environ; 2019 Jul; 672():30-39. PubMed ID: 30954821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between phosphorus feeding strategies for pigs and dairy cows and separation efficiency of slurry.
    Sommer SG; Maahn M; Poulsen HD; Hjorth M; Sehested J
    Environ Technol; 2008 Jan; 29(1):75-80. PubMed ID: 18610547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus distribution in untreated and composted solid fractions from slurry separation.
    Jorgensen K; Magid J; Luxhoi J; Jensen LS
    J Environ Qual; 2010; 39(1):393-401. PubMed ID: 20048327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidification of pig slurry before separation to improve slurry management on farms.
    Regueiro I; Coutinho J; Balsari P; Popovic O; Fangueiro D
    Environ Technol; 2016 Aug; 37(15):1906-13. PubMed ID: 26695081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.
    Gómez-Muñoz B; Case SD; Jensen LS
    J Environ Manage; 2016 Mar; 168():236-44. PubMed ID: 26716355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Livestock Slurry Ozonation and Separation on pH, Particles, and Phosphate.
    Pedersen CØ; Hjorth M; Hutchings NJ
    J Environ Qual; 2014 May; 43(3):1043-9. PubMed ID: 25602833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solids, organic load and nutrient concentration reductions in swine waste slurry using a polyacrylamide (PAM)-aided solids flocculation treatment.
    Walker P; Kelley T
    Bioresour Technol; 2003 Nov; 90(2):151-8. PubMed ID: 12895558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of 17β-estradiol to pig slurry separates and soil in the soil-slurry environment.
    Amin MG; Petersen SO; Lægdsmand M
    J Environ Qual; 2012; 41(1):179-87. PubMed ID: 22218186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long term fate of slurry derived nitrogen in soil: a case study with a macro-lysimeter experiment having received high loads of pig slurry (Solepur).
    Peu P; Birgand F; Martinez J
    Bioresour Technol; 2007 Dec; 98(17):3228-34. PubMed ID: 16930996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal Slurry Acidification Affects Particle Size Distribution and Improves Separation Efficiency.
    Regueiro I; Pociask M; Coutinho J; Fangueiro D
    J Environ Qual; 2016 May; 45(3):1096-103. PubMed ID: 27136179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark.
    ten Hoeve M; Hutchings NJ; Peters GM; Svanström M; Jensen LS; Bruun S
    J Environ Manage; 2014 Jan; 132():60-70. PubMed ID: 24291578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage separation and acidification of pig slurry - Nutrient separation efficiency and agronomical implications.
    Pantelopoulos A; Aronsson H
    J Environ Manage; 2021 Feb; 280():111653. PubMed ID: 33229114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of phosphorus from biological aerobic treatment of pig slurry. By-products characterization and recovery.
    Daumer ML; Beline F; Guiziou F
    Environ Technol; 2003 Nov; 24(11):1323-30. PubMed ID: 14733385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge.
    Chen Y; Zheng X; Feng L; Yang H
    Water Sci Technol; 2013; 68(4):916-22. PubMed ID: 23985524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cattle slurry separation on greenhouse gas and ammonia emissions during storage.
    Fangueiro D; Coutinho J; Chadwick D; Moreira N; Trindade H
    J Environ Qual; 2008; 37(6):2322-31. PubMed ID: 18948486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the potential of slurry management technologies to reduce the constraints of environmental legislation on pig production.
    Hutchings NJ; ten Hoeve M; Jensen R; Bruun S; Søtoft LF
    J Environ Manage; 2013 Nov; 130():447-56. PubMed ID: 24184986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal and phosphorus content of fractions from manure treatment and incineration.
    Møller HB; Jensen HS; Tobiasen L; Hansen MN
    Environ Technol; 2007 Dec; 28(12):1403-18. PubMed ID: 18341150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.