BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21488619)

  • 1. Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment.
    Shin JH; Moon JH
    Langmuir; 2011 May; 27(10):6311-5. PubMed ID: 21488619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical twin-scale inverse opal TiO2 electrodes for dye-sensitized solar cells.
    Cho CY; Moon JH
    Langmuir; 2012 Jun; 28(25):9372-7. PubMed ID: 22676971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells.
    Shin JH; Kang JH; Jin WM; Park JH; Cho YS; Moon JH
    Langmuir; 2011 Jan; 27(2):856-60. PubMed ID: 21155579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells.
    Kim HN; Moon JH
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5821-5. PubMed ID: 23153118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes.
    Yun TK; Park SS; Kim D; Shim JH; Bae JY; Huh S; Won YS
    Dalton Trans; 2012 Jan; 41(4):1284-8. PubMed ID: 22124477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals.
    Halaoui LI; Abrams NM; Mallouk TE
    J Phys Chem B; 2005 Apr; 109(13):6334-42. PubMed ID: 16851706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO₂ Solar Cells.
    Hori K; Zhang Y; Tusamalee P; Nakazawa N; Yoshihara Y; Wang R; Toyoda T; Hayase S; Shen Q
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29941828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode.
    Lin WJ; Hsu CT; Tsai YC
    J Colloid Interface Sci; 2011 Jun; 358(2):562-6. PubMed ID: 21463866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a multi-scale nanostructure of TiO(2) for application in dye-sensitized solar cells.
    Kuo CY; Lu SY
    Nanotechnology; 2008 Mar; 19(9):095705. PubMed ID: 21817687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications.
    Lee JW; Moon JH
    Nanoscale; 2015 Mar; 7(12):5164-8. PubMed ID: 25634556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.
    Kim HN; Yoo H; Moon JH
    Nanoscale; 2013 May; 5(10):4200-4. PubMed ID: 23536037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells.
    Jung HS; Lee JK; Nastasi M; Lee SW; Kim JY; Park JS; Hong KS; Shin H
    Langmuir; 2005 Nov; 21(23):10332-5. PubMed ID: 16262288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electrode structures and photovoltaic properties of porphyrin-sensitized solar cells with TiO2 and Nb, Ge, Zr-added TiO2 composite electrodes.
    Imahori H; Hayashi S; Umeyama T; Eu S; Oguro A; Kang S; Matano Y; Shishido T; Ngamsinlapasathian S; Yoshikawa S
    Langmuir; 2006 Dec; 22(26):11405-11. PubMed ID: 17154633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse opal carbons for counter electrode of dye-sensitized solar cells.
    Kang DY; Lee Y; Cho CY; Moon JH
    Langmuir; 2012 May; 28(17):7033-8. PubMed ID: 22475456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye-sensitized solar cells based on a nanoparticle/nanotube bilayer structure and their equivalent circuit analysis.
    Xin X; Wang J; Han W; Ye M; Lin Z
    Nanoscale; 2012 Feb; 4(3):964-9. PubMed ID: 22193983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled TiO₂ with increased photoelectron production, and improved conduction and transfer: enhancing photovoltaic performance of dye-sensitized solar cells.
    Ahmed S; Du Pasquier A; Birnie DP; Asefa T
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3002-10. PubMed ID: 21714503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: an effective candidate for dye-sensitized solar-cells.
    Qu Y; Zhou W; Pan K; Tian C; Ren Z; Dong Y; Fu H
    Phys Chem Chem Phys; 2010 Aug; 12(32):9205-12. PubMed ID: 20623065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells.
    Park Y; Lee JW; Ha SJ; Moon JH
    Nanoscale; 2014 Mar; 6(6):3105-9. PubMed ID: 24356878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holographically defined TiO2 electrodes for dye-sensitized solar cells.
    Jin WM; Shin JH; Cho CY; Kang JH; Park JH; Moon JH
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):2970-3. PubMed ID: 20979378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.