These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 21488656)
21. Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules. Snyder RD; Pearl GS; Mandakas G; Choy WN; Goodsaid F; Rosenblum IY Environ Mol Mutagen; 2004; 43(3):143-58. PubMed ID: 15065202 [TBL] [Abstract][Full Text] [Related]
22. Applicability Domain: A Step Toward Confident Predictions and Decidability for QSAR Modeling. Kar S; Roy K; Leszczynski J Methods Mol Biol; 2018; 1800():141-169. PubMed ID: 29934891 [TBL] [Abstract][Full Text] [Related]
23. Derivation and validation of toxicophores for mutagenicity prediction. Kazius J; McGuire R; Bursi R J Med Chem; 2005 Jan; 48(1):312-20. PubMed ID: 15634026 [TBL] [Abstract][Full Text] [Related]
24. ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals. Gini G; Franchi AM; Manganaro A; Golbamaki A; Benfenati E SAR QSAR Environ Res; 2014; 25(12):999-1011. PubMed ID: 25511972 [TBL] [Abstract][Full Text] [Related]
25. Construction and Consensus Performance of (Q)SAR Models for Predicting Phospholipidosis Using a Dataset of 743 Compounds. Orogo AM; Choi SS; Minnier BL; Kruhlak NL Mol Inform; 2012 Oct; 31(10):725-39. PubMed ID: 27476455 [TBL] [Abstract][Full Text] [Related]
26. Using in vitro structural alerts for chromosome damage to predict in vivo activity and direct future testing. Canipa S; Cayley A; Drewe WC; Williams RV; Hamada S; Hirose A; Honma M; Morita T Mutagenesis; 2016 Jan; 31(1):17-25. PubMed ID: 26142242 [TBL] [Abstract][Full Text] [Related]
27. Experimental verification of structural alerts for the protein binding of cyclic compounds acting as Michael acceptors. Rodriguez-Sanchez N; Schultz TW; Cronin MT; Enoch SJ SAR QSAR Environ Res; 2013 Nov; 24(11):963-77. PubMed ID: 23988158 [TBL] [Abstract][Full Text] [Related]
28. Use of Read-Across Tools. Manganelli S; Benfenati E Methods Mol Biol; 2016; 1425():305-22. PubMed ID: 27311471 [TBL] [Abstract][Full Text] [Related]
29. Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble. Mattioni BE; Kauffman GW; Jurs PC; Custer LL; Durham SK; Pearl GM J Chem Inf Comput Sci; 2003; 43(3):949-63. PubMed ID: 12767154 [TBL] [Abstract][Full Text] [Related]
30. Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. Ferrari T; Cattaneo D; Gini G; Golbamaki Bakhtyari N; Manganaro A; Benfenati E SAR QSAR Environ Res; 2013; 24(5):365-83. PubMed ID: 23710765 [TBL] [Abstract][Full Text] [Related]
31. Applicability Domain ANalysis (ADAN): a robust method for assessing the reliability of drug property predictions. CarriĆ³ P; Pinto M; Ecker G; Sanz F; Pastor M J Chem Inf Model; 2014 May; 54(5):1500-11. PubMed ID: 24821140 [TBL] [Abstract][Full Text] [Related]
32. Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: is aromatic N-oxide a structural alert for predicting DNA-reactive mutagenicity? Amberg A; Anger LT; Bercu J; Bower D; Cross KP; Custer L; Harvey JS; Hasselgren C; Honma M; Johnson C; Jolly R; Kenyon MO; Kruhlak NL; Leavitt P; Quigley DP; Miller S; Snodin D; Stavitskaya L; Teasdale A; Trejo-Martin A; White AT; Wichard J; Myatt GJ Mutagenesis; 2019 Mar; 34(1):67-82. PubMed ID: 30189015 [TBL] [Abstract][Full Text] [Related]
33. A stepwise approach for defining the applicability domain of SAR and QSAR models. Dimitrov S; Dimitrova G; Pavlov T; Dimitrova N; Patlewicz G; Niemela J; Mekenyan O J Chem Inf Model; 2005; 45(4):839-49. PubMed ID: 16045276 [TBL] [Abstract][Full Text] [Related]
34. Identification of the structural requirements for mutagenicity by incorporating molecular flexibility and metabolic activation of chemicals I: TA100 model. Mekenyan O; Dimitrov S; Serafimova R; Thompson E; Kotov S; Dimitrova N; Walker JD Chem Res Toxicol; 2004 Jun; 17(6):753-66. PubMed ID: 15206896 [TBL] [Abstract][Full Text] [Related]
35. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination. Norinder U; Carlsson L; Boyer S; Eklund M J Chem Inf Model; 2014 Jun; 54(6):1596-603. PubMed ID: 24797111 [TBL] [Abstract][Full Text] [Related]
37. Experimental verification, and domain definition, of structural alerts for protein binding: epoxides, lactones, nitroso, nitros, aldehydes and ketones. Nelms MD; Cronin MT; Schultz TW; Enoch SJ SAR QSAR Environ Res; 2013; 24(9):695-709. PubMed ID: 23711092 [TBL] [Abstract][Full Text] [Related]
38. Integrated in silico approaches for the prediction of Ames test mutagenicity. Modi S; Li J; Malcomber S; Moore C; Scott A; White A; Carmichael P J Comput Aided Mol Des; 2012 Sep; 26(9):1017-33. PubMed ID: 22918548 [TBL] [Abstract][Full Text] [Related]
39. Random forest prediction of mutagenicity from empirical physicochemical descriptors. Zhang QY; Aires-de-Sousa J J Chem Inf Model; 2007; 47(1):1-8. PubMed ID: 17238242 [TBL] [Abstract][Full Text] [Related]
40. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]