These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 21488693)

  • 1. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue".
    Taylor RW; Lee TC; Scherman OA; Esteban R; Aizpurua J; Huang FM; Baumberg JJ; Mahajan S
    ACS Nano; 2011 May; 5(5):3878-87. PubMed ID: 21488693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic assembly of one-dimensional nanoparticle chains with cucurbit[7]uril controlled subnanometer junctions.
    Hüsken N; Taylor RW; Zigah D; Taveau JC; Lambert O; Scherman OA; Baumberg JJ; Kuhn A
    Nano Lett; 2013; 13(12):6016-22. PubMed ID: 24180422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ SERS monitoring of photochemistry within a nanojunction reactor.
    Taylor RW; Coulston RJ; Biedermann F; Mahajan S; Baumberg JJ; Scherman OA
    Nano Lett; 2013; 13(12):5985-90. PubMed ID: 24188432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative SERS Detection of Uric Acid via Formation of Precise Plasmonic Nanojunctions within Aggregates of Gold Nanoparticles and Cucurbit[n]uril.
    Chio WK; Davison G; Jones T; Liu J; Parkin IP; Lee TC
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33074261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular alignment of gold nanorods via cucurbit[8]uril ternary complex formation.
    Jones ST; Zayed JM; Scherman OA
    Nanoscale; 2013 Jun; 5(12):5299-302. PubMed ID: 23685700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs.
    Kasera S; Biedermann F; Baumberg JJ; Scherman OA; Mahajan S
    Nano Lett; 2012 Nov; 12(11):5924-8. PubMed ID: 23088754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular gold nanoparticle-polymer composites formed in water with cucurbit[8]uril.
    Coulston RJ; Jones ST; Lee TC; Appel EA; Scherman OA
    Chem Commun (Camb); 2011 Jan; 47(1):164-6. PubMed ID: 20842297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy.
    Tian C; Liu Z; Jin J; Lebedkin S; Huang C; You H; Liu R; Wang L; Song X; Ding B; Barczewski M; Schimmel T; Fang J
    Nanotechnology; 2012 Apr; 23(16):165604. PubMed ID: 22469765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy.
    Gao Y; Zou F; Wu B; Wang X; Zhang J; Koh K; Chen H
    Biosens Bioelectron; 2016 Jul; 81():207-213. PubMed ID: 26950645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.
    Alexander KD; Skinner K; Zhang S; Wei H; Lopez R
    Nano Lett; 2010 Nov; 10(11):4488-93. PubMed ID: 20923232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of plasmonic nanostructures for biomolecular detection: interplay between theory and experiments.
    Fraire JC; Pérez LA; Coronado EA
    ACS Nano; 2012 Apr; 6(4):3441-52. PubMed ID: 22452324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids.
    Cole RM; Mahajan S; Bartlett PN; Baumberg JJ
    Opt Express; 2009 Aug; 17(16):13298-308. PubMed ID: 19654734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticle superlattices as functional solids for concomitant conductivity and SERS tuning.
    Shibu ES; Cyriac J; Pradeep T; Chakrabarti J
    Nanoscale; 2011 Mar; 3(3):1066-72. PubMed ID: 21161103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observing Single Molecules Complexing with Cucurbit[7]uril through Nanogap Surface-Enhanced Raman Spectroscopy.
    Sigle DO; Kasera S; Herrmann LO; Palma A; de Nijs B; Benz F; Mahajan S; Baumberg JJ; Scherman OA
    J Phys Chem Lett; 2016 Feb; 7(4):704-10. PubMed ID: 26766205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic nanohybrid with ultrasmall Ag nanoparticles and fluorescent dyes.
    Rainò G; Stöferle T; Park C; Kim HC; Topuria T; Rice PM; Chin IJ; Miller RD; Mahrt RF
    ACS Nano; 2011 May; 5(5):3536-41. PubMed ID: 21534536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of cucurbit[n]uril (n = 6, 7) complexes with amino compounds in aqueous formic acid studied by capillary electrophoresis.
    Wei F; Liu SM; Xu L; Cheng GZ; Wu CT; Feng YQ
    Electrophoresis; 2005 Jun; 26(11):2214-24. PubMed ID: 15880553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon resonance changes of gold nanoparticle arrays upon modification.
    Ha DH; Kim S; Yun YJ; Park HJ; Yun WS; Song JH
    Nanotechnology; 2009 Feb; 20(8):085204. PubMed ID: 19417444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cucurbit[8]uril-mediated SERS plasmonic nanostructures with sub-nanometer gap for the identification and determination of estrogens.
    Teng Y; Li X; Chen Y; Xu P; Pan Z; Shao K; Sun N
    Mikrochim Acta; 2023 Apr; 190(5):185. PubMed ID: 37071210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.