BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21488815)

  • 1. Wireless microstimulators for neural prosthetics.
    Sahin M; Pikov V
    Crit Rev Biomed Eng; 2011; 39(1):63-77. PubMed ID: 21488815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floating light-activated microelectrical stimulators tested in the rat spinal cord.
    Abdo A; Sahin M; Freedman DS; Cevik E; Spuhler PS; Unlu MS
    J Neural Eng; 2011 Oct; 8(5):056012. PubMed ID: 21914931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constant-current adjustable-waveform microstimulator for an implantable hybrid neural prosthesis.
    Hassell TJ; Jedlicka SS; Rickus JL; Irazoqui PP
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2436-9. PubMed ID: 18002486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Neural Stimulation With Floating-Light-Activated Microelectrical Stimulators.
    Abdo A; Sahin M
    IEEE Trans Biomed Circuits Syst; 2011 Apr; 2011(99):1. PubMed ID: 21552457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High frequency block of selected axons using an implantable microstimulator.
    Peng CW; Chen JJ; Lin CC; Poon PW; Liang CK; Lin KP
    J Neurosci Methods; 2004 Mar; 134(1):81-90. PubMed ID: 15102506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators.
    Ghovanloo M; Najafi K
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):97-105. PubMed ID: 15651568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):761-72. PubMed ID: 24473541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of surrogate spinal cords for the evaluation of electrode arrays used in intraspinal implants.
    Cheng C; Kmech J; Mushahwar VK; Elias AL
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1667-76. PubMed ID: 23358939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord.
    Ersen A; Elkabes S; Freedman DS; Sahin M
    J Neural Eng; 2015 Feb; 12(1):016019. PubMed ID: 25605679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless control of intraspinal microstimulation in a rodent model of paralysis.
    Grahn PJ; Lee KH; Kasasbeh A; Mallory GW; Hachmann JT; Dube JR; Kimble CJ; Lobel DA; Bieber A; Jeong JH; Bennet KE; Lujan JL
    J Neurosurg; 2015 Jul; 123(1):232-242. PubMed ID: 25479124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term bladder-wall response to implantation of microstimulators.
    Walter JS; Riedy L; King W; Wheeler JS; Najafi K; Anderson CL; Gudausky TM; Dokmeci M
    J Spinal Cord Med; 1997 Jul; 20(3):319-23. PubMed ID: 9261777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved selectivity from a wavelength addressable device for wireless stimulation of neural tissue.
    Seymour EÇ; Freedman DS; Gökkavas M; Ozbay E; Sahin M; Unlü MS
    Front Neuroeng; 2014; 7():5. PubMed ID: 24600390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological stimulators: from electric fish to programmable implants.
    Seligman LJ
    IEEE Trans Biomed Eng; 1982 Apr; 29(4):270-84. PubMed ID: 7068164
    [No Abstract]   [Full Text] [Related]  

  • 14. The wireless alternative to traditional wired networks.
    Swartz D
    Telemed Today; 1998 Jun; 6(3):26-8. PubMed ID: 10183141
    [No Abstract]   [Full Text] [Related]  

  • 15. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators.
    Ersen A; Sahin M
    J Biomed Opt; 2017 May; 22(5):55005. PubMed ID: 28500857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless networks of injectable microelectronic stimulators based on rectification of volume conducted high frequency currents.
    García-Moreno A; Comerma-Montells A; Tudela-Pi M; Minguillon J; Becerra-Fajardo L; Ivorra A
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041421
    [No Abstract]   [Full Text] [Related]  

  • 17. Stimulation of the expiratory muscles using microstimulators.
    Lin VW; Deng X; Lee YS; Hsiao IN
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):416-20. PubMed ID: 18713679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro testing of floating light activated micro-electrical stimulators.
    Abdo A; Jayasinha V; Spuhler PS; Unlu M; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():626-9. PubMed ID: 19964480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Energy-Autonomous Wireless Microsensors for Biomedical Applications: Powering and Communication.
    Goodarzy F; Skafidas ES; Gambini S
    IEEE Rev Biomed Eng; 2015; 8():17-29. PubMed ID: 25137732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical neural excitations in rats in vivo with using a prototype of a wireless multi-channel microstimulation system.
    Hayashida Y; Umehira Y; Takatani K; Futami S; Kameda S; Kamata T; Khan AU; Takeuchi Y; Imai M; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1642-5. PubMed ID: 26736590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.