BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21488815)

  • 21. Safety of multi-channel stimulation implants: a single blocking capacitor per channel is not sufficient after single-fault failure.
    Nonclercq A; Lonys L; Vanhoestenberghe A; Demosthenous A; Donaldson N
    Med Biol Eng Comput; 2012 Apr; 50(4):403-10. PubMed ID: 22391946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wireless Addressable Cortical Microstimulators Powered by Near-Infrared Harvesting.
    Lee AH; Lee J; Jang J; Nurmikko A; Song YK
    ACS Sens; 2021 Jul; 6(7):2728-2737. PubMed ID: 34236857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury.
    Torregrosa T; Koppes RA
    Cells Tissues Organs; 2016; 202(1-2):6-22. PubMed ID: 27701161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory prostheses research with multiple channel intracochlear stimulation in man.
    Eddington DK; Dobelle WH; Brackmann DE; Mladejovsky MG; Parkin JL
    Ann Otol Rhinol Laryngol; 1978; 87(6 Pt 2):1-39. PubMed ID: 736424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A wireless 64-channel ECoG recording electronic for implantable monitoring and BCI applications: WIMAGINE.
    Charvet G; Foerster M; Chatalic G; Michea A; Porcherot J; Bonnet S; Filipe S; Audebert P; Robinet S; Josselin V; Reverdy J; D'Errico R; Sauter F; Mestais C; Benabid AL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():783-6. PubMed ID: 23366009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Second-generation microstimulator.
    Arcos I; Davis R; Fey K; Mishler D; Sanderson D; Tanacs C; Vogel MJ; Wolf R; Zilberman Y; Schulman J
    Artif Organs; 2002 Mar; 26(3):228-31. PubMed ID: 11940019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RSSI/LQI-based transmission power control for body area networks in healthcare environment.
    Kim S; Kim S; Eom DS
    IEEE J Biomed Health Inform; 2013 May; 17(3):561-71. PubMed ID: 23193316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust.
    Seo D; Neely RM; Shen K; Singhal U; Alon E; Rabaey JM; Carmena JM; Maharbiz MM
    Neuron; 2016 Aug; 91(3):529-39. PubMed ID: 27497221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A single-channel implantable microstimulator for functional neuromuscular stimulation.
    Ziaie B; Nardin MD; Coghlan AR; Najafi K
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):909-20. PubMed ID: 9311160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New architecture for wireless implantable neural recording microsystems based on frequency-division multiplexing.
    Rajabi-Tavakkol A; Sodagar AM; Refan MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6449-52. PubMed ID: 21096715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties.
    Gaunt RA; Hokanson JA; Weber DJ
    J Neural Eng; 2009 Oct; 6(5):055009. PubMed ID: 19721181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Advances in sensor node and wireless communication technology of body sensor network].
    Lin W; Lei S; Wei C; Li C; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):568-73. PubMed ID: 22826960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A miniaturized system for spike-triggered intracortical microstimulation in an ambulatory rat.
    Azin M; Guggenmos DJ; Barbay S; Nudo RJ; Mohseni P
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2589-97. PubMed ID: 21690007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.
    Becerra-Fajardo L; Ivorra A
    PLoS One; 2015; 10(7):e0131666. PubMed ID: 26147771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intraspinal microstimulation using cylindrical multielectrodes.
    Snow S; Horch KW; Mushahwar VK
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):311-9. PubMed ID: 16485760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A power efficient electronic implant for a visual cortical neuroprosthesis.
    Coulombe J; Carniguian S; Sawan M
    Artif Organs; 2005 Mar; 29(3):233-8. PubMed ID: 15725224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Adaptive Sensor Data Segments Selection Method for Wearable Health Care Services.
    Chen SY; Lai CF; Hwang RH; Lai YH; Wang MS
    J Med Syst; 2015 Dec; 39(12):194. PubMed ID: 26490152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wireless Power Transfer Strategies for Implantable Bioelectronics.
    Agarwal K; Jegadeesan R; Guo YX; Thakor NV
    IEEE Rev Biomed Eng; 2017; 10():136-161. PubMed ID: 28328511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A distributed architecture for activating the peripheral nervous system.
    Andreu D; Guiraud D; Souquet G
    J Neural Eng; 2009 Apr; 6(2):026001. PubMed ID: 19213992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active floating micro electrode arrays (AFMA).
    Kim T; Troyk PR; Bak M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2807-10. PubMed ID: 17946982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.