BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21489305)

  • 21. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing genomic differences of human cancer stratified by the TP53 mutation status.
    Wang M; Yang C; Zhang X; Li X
    Mol Genet Genomics; 2018 Jun; 293(3):737-746. PubMed ID: 29330617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of Driver Modules with Rarely Mutated Genes in Cancers.
    Li F; Gao L; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):390-401. PubMed ID: 29994261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Somatic EP300-G211S mutations are associated with overall somatic mutational patterns and breast cancer specific survival in triple-negative breast cancer.
    Bemanian V; Noone JC; Sauer T; Touma J; Vetvik K; Søderberg-Naucler C; Lindstrøm JC; Bukholm IR; Kristensen VN; Geisler J
    Breast Cancer Res Treat; 2018 Nov; 172(2):339-351. PubMed ID: 30132219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic identification of functional modules and cis-regulatory elements in Arabidopsis thaliana.
    Ruan J; Perez J; Hernandez B; Lei C; Sunter G; Sponsel VM
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S2. PubMed ID: 22168340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting Functional Modules of Liver Cancer Based on Differential Network Analysis.
    Hu B; Chang X; Liu X
    Interdiscip Sci; 2019 Dec; 11(4):636-644. PubMed ID: 30603844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key genes and functional coexpression modules involved in the pathogenesis of systemic lupus erythematosus.
    Yan S; Wang W; Gao G; Cheng M; Wang X; Wang Z; Ma X; Chai C; Xu D
    J Cell Physiol; 2018 Nov; 233(11):8815-8825. PubMed ID: 29806703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A network model of a cooperative genetic landscape in brain tumors.
    Bredel M; Scholtens DM; Harsh GR; Bredel C; Chandler JP; Renfrow JJ; Yadav AK; Vogel H; Scheck AC; Tibshirani R; Sikic BI
    JAMA; 2009 Jul; 302(3):261-75. PubMed ID: 19602686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revealing radiotherapy- and chemoradiation-induced pathway dynamics in glioblastoma by analyzing multiple differential networks.
    Zhou J; Chen C; Li HF; Hu YJ; Xie HL
    Mol Med Rep; 2017 Jul; 16(1):696-702. PubMed ID: 28560382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
    Cancer Genome Atlas Research Network
    Nature; 2008 Oct; 455(7216):1061-8. PubMed ID: 18772890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying cancer prognostic modules by module network analysis.
    Zhou XH; Chu XY; Xue G; Xiong JH; Zhang HY
    BMC Bioinformatics; 2019 Feb; 20(1):85. PubMed ID: 30777030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer.
    Xu M; Kao MC; Nunez-Iglesias J; Nevins JR; West M; Zhou XJ
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S12. PubMed ID: 18366601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of novel drug resistance mechanisms by genomic and transcriptomic profiling of glioblastoma cells with mutation-activated EGFR.
    Kadioglu O; Saeed MEM; Mahmoud N; Azawi S; Mrasek K; Liehr T; Efferth T
    Life Sci; 2021 Nov; 284():119601. PubMed ID: 33991550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional microarray analysis suggests repressed cell-cell signaling and cell survival-related modules inhibit progression of head and neck squamous cell carcinoma.
    Coló AE; Simoes AC; Carvalho AL; Melo CM; Fahham L; Kowalski LP; Soares FA; Neves EJ; Reis LF; Carvalho AF
    BMC Med Genomics; 2011 Apr; 4():33. PubMed ID: 21489260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MIRAGAA--a methodology for finding coordinated effects of microRNA expression changes and genome aberrations in cancer.
    Gaire RK; Bailey J; Bearfoot J; Campbell IG; Stuckey PJ; Haviv I
    Bioinformatics; 2010 Jan; 26(2):161-7. PubMed ID: 19933823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma.
    Valsesia A; Rimoldi D; Martinet D; Ibberson M; Benaglio P; Quadroni M; Waridel P; Gaillard M; Pidoux M; Rapin B; Rivolta C; Xenarios I; Simpson AJ; Antonarakis SE; Beckmann JS; Jongeneel CV; Iseli C; Stevenson BJ
    PLoS One; 2011 Apr; 6(4):e18369. PubMed ID: 21494657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MEXCOwalk: mutual exclusion and coverage based random walk to identify cancer modules.
    Ahmed R; Baali I; Erten C; Hoxha E; Kazan H
    Bioinformatics; 2020 Feb; 36(3):872-879. PubMed ID: 31432076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of driver modules in pan-cancer via coordinating coverage and exclusivity.
    Gao B; Li G; Liu J; Li Y; Huang X
    Oncotarget; 2017 May; 8(22):36115-36126. PubMed ID: 28415609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.