These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21489750)

  • 1. Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images.
    Muramatsu C; Hatanaka Y; Iwase T; Hara T; Fujita H
    Comput Med Imaging Graph; 2011 Sep; 35(6):472-80. PubMed ID: 21489750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
    Niemeijer M; Xu X; Dumitrescu AV; Gupta P; van Ginneken B; Folk JC; Abramoff MD
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1941-50. PubMed ID: 21690008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An automatic system for the estimation of generalized arteriolar narrowing in retinal images.
    Ruggeri A; Grisan E; De Luca M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6464-7. PubMed ID: 18003505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved system for the automatic estimation of the Arteriolar-to-Venular diameter Ratio (AVR) in retinal images.
    Tramontan L; Grisan E; Ruggeri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3550-3. PubMed ID: 19163475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated characterization of blood vessels as arteries and veins in retinal images.
    Mirsharif Q; Tajeripour F; Pourreza H
    Comput Med Imaging Graph; 2013; 37(7-8):607-17. PubMed ID: 23849699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color Fundus Image Guided Artery-Vein Differentiation in Optical Coherence Tomography Angiography.
    Alam M; Toslak D; Lim JI; Yao X
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):4953-4962. PubMed ID: 30326063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artery and vein diameter ratio measurement based on improvement of arteries and veins segmentation on retinal images.
    Hatanaka Y; Tachiki H; Ogohara K; Muramatsu C; Okumura S; Fujita H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1336-1339. PubMed ID: 28268572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Update on retinal vessel structure measurement with spectral-domain optical coherence tomography.
    Zhu TP; Tong YH; Zhan HJ; Ma J
    Microvasc Res; 2014 Sep; 95():7-14. PubMed ID: 24976361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artery-vein segmentation in fundus images using a fully convolutional network.
    Hemelings R; Elen B; Stalmans I; Van Keer K; De Boever P; Blaschko MB
    Comput Med Imaging Graph; 2019 Sep; 76():101636. PubMed ID: 31288217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint segmentation and classification of retinal arteries/veins from fundus images.
    Girard F; Kavalec C; Cheriet F
    Artif Intell Med; 2019 Mar; 94():96-109. PubMed ID: 30871687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and Grading of Hypertensive Retinopathy Using Vessels Tortuosity and Arteriovenous Ratio.
    Badawi SA; Fraz MM; Shehzad M; Mahmood I; Javed S; Mosalam E; Nileshwar AK
    J Digit Imaging; 2022 Apr; 35(2):281-301. PubMed ID: 35013827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of retinal vessel diameter reduction after photocoagulation treatment for retinopathy of prematurity.
    Johnson KS; Mills MD; Karp KA; Grunwald JE
    Am J Ophthalmol; 2007 Jun; 143(6):1030-2. PubMed ID: 17524769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an automated system to classify retinal vessels into arteries and veins.
    Saez M; González-Vázquez S; González-Penedo M; Barceló MA; Pena-Seijo M; Coll de Tuero G; Pose-Reino A
    Comput Methods Programs Biomed; 2012 Oct; 108(1):367-76. PubMed ID: 22424729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundus photography as a convenient tool to study microvascular responses to cardiovascular disease risk factors in epidemiological studies.
    De Boever P; Louwies T; Provost E; Int Panis L; Nawrot TS
    J Vis Exp; 2014 Oct; (92):e51904. PubMed ID: 25407823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Retinal blood vessel measurement using a line sensor].
    Suzuki Y; Yoshisuji M
    Nippon Ganka Gakkai Zasshi; 1994 Jan; 98(1):92-7. PubMed ID: 8109452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal artery-vein caliber grading using color fundus imaging.
    Bhuiyan A; Kawasaki R; Lamoureux E; Ramamohanarao K; Wong TY
    Comput Methods Programs Biomed; 2013 Jul; 111(1):104-14. PubMed ID: 23535181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RetinaCAD, a system for the assessment of retinal vascular changes.
    Dashtbozorg B; Mendonça AM; Penas S; Campilho A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6328-31. PubMed ID: 25571444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: XIX: the Wisconsin Epidemiologic Study of Diabetic Retinopathy.
    Klein R; Klein BE; Moss SE; Wong TY; Hubbard L; Cruickshanks KJ; Palta M
    Arch Ophthalmol; 2004 Jan; 122(1):76-83. PubMed ID: 14718299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable monitoring system for arteriovenous ratio computation.
    Vázquez SG; Barreira N; Penedo MG; Rodríguez-Blanco M
    Comput Med Imaging Graph; 2013; 37(5-6):337-45. PubMed ID: 24183660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artery vein classification in fundus images using serially connected U-Nets.
    Karlsson RA; Hardarson SH
    Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.