These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21490138)

  • 41. Transport of organic anions across the basolateral membrane of proximal tubule cells.
    Burckhardt BC; Burckhardt G
    Rev Physiol Biochem Pharmacol; 2003; 146():95-158. PubMed ID: 12605306
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Behavioural abnormalities of the hyposulphataemic Nas1 knock-out mouse.
    Dawson PA; Steane SE; Markovich D
    Behav Brain Res; 2004 Oct; 154(2):457-63. PubMed ID: 15313034
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In female rats, ethylene glycol treatment elevates protein expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) without inducing hyperoxaluria.
    Breljak D; Brzica H; Vrhovac I; Micek V; Karaica D; Ljubojević M; Sekovanić A; Jurasović J; Rašić D; Peraica M; Lovrić M; Schnedler N; Henjakovic M; Wegner W; Burckhardt G; Burckhardt BC; Sabolić I
    Croat Med J; 2015 Oct; 56(5):447-59. PubMed ID: 26526882
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ibuprofen-induced changes in sulfate renal transport.
    Sagawa K; Benincosa LJ; Murer H; Morris ME
    J Pharmacol Exp Ther; 1998 Dec; 287(3):1092-7. PubMed ID: 9864297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of the sodium/sulfate co-transporter by farnesoid X receptor alpha.
    Lee H; Hubbert ML; Osborne TF; Woodford K; Zerangue N; Edwards PA
    J Biol Chem; 2007 Jul; 282(30):21653-61. PubMed ID: 17545158
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular aspects of renal tubular handling and regulation of inorganic sulfate.
    Beck L; Silve C
    Kidney Int; 2001 Mar; 59(3):835-45. PubMed ID: 11231338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis.
    Ohana E; Shcheynikov N; Moe OW; Muallem S
    J Am Soc Nephrol; 2013 Oct; 24(10):1617-26. PubMed ID: 23833257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice.
    Dawson PA; Steane SE; Markovich D
    Behav Brain Res; 2005 Apr; 159(1):15-20. PubMed ID: 15794992
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional characterization and genomic organization of the human Na(+)-sulfate cotransporter hNaS2 gene (SLC13A4).
    Markovich D; Regeer RR; Kunzelmann K; Dawson PA
    Biochem Biophys Res Commun; 2005 Jan; 326(4):729-34. PubMed ID: 15607730
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxalate: from the environment to kidney stones.
    Brzica H; Breljak D; Burckhardt BC; Burckhardt G; Sabolić I
    Arh Hig Rada Toksikol; 2013 Dec; 64(4):609-30. PubMed ID: 24384768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Abnormal sulfate metabolism in vitamin D-deficient rats.
    Fernandes I; Hampson G; Cahours X; Morin P; Coureau C; Couette S; Prie D; Biber J; Murer H; Friedlander G; Silve C
    J Clin Invest; 1997 Nov; 100(9):2196-203. PubMed ID: 9410896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quaternary structure and apical membrane sorting of the mammalian NaSi-1 sulfate transporter in renal cell lines.
    Regeer RR; Nicke A; Markovich D
    Int J Biochem Cell Biol; 2007; 39(12):2240-51. PubMed ID: 17681482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The renal type IIa Na/Pi cotransporter: structure-function relationships.
    Murer H; Köhler K; Lambert G; Stange G; Biber J; Forster I
    Cell Biochem Biophys; 2002; 36(2-3):215-20. PubMed ID: 12139407
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The kidney--the body's playground for drugs: an overview of renal drug handling with selected clinical correlates.
    Perri D; Ito S; Rowsell V; Shear NH
    Can J Clin Pharmacol; 2003; 10(1):17-23. PubMed ID: 12687033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of SLC26A6-mediated Cl⁻-oxalate exchange in renal physiology and pathophysiology.
    Aronson PS
    J Nephrol; 2010; 23 Suppl 16():S158-64. PubMed ID: 21170874
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxalate in renal stone disease: the terminal metabolite that just won't go away.
    Marengo SR; Romani AM
    Nat Clin Pract Nephrol; 2008 Jul; 4(7):368-77. PubMed ID: 18523430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sodium dicarboxylate cotransporter-1 expression in renal tissues and its role in rat experimental nephrolithiasis.
    He Y; Chen X; Yu Z; Wu D; Lv Y; Shi S; Zhu H
    J Nephrol; 2004; 17(1):34-42. PubMed ID: 15151257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sulfate permeasesphylogenetic diversity of sulfate transport.
    Piłsyk S; Paszewski A
    Acta Biochim Pol; 2009; 56(3):375-84. PubMed ID: 19724780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1.
    Xie Q; Welch R; Mercado A; Romero MF; Mount DB
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F826-38. PubMed ID: 12217875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Citrate transport by the kidney and intestine.
    Pajor AM
    Semin Nephrol; 1999 Mar; 19(2):195-200. PubMed ID: 10192253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.