These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21490198)

  • 1. Extra forces evoked during electrical stimulation of the muscle or its nerve are generated and modulated by a length-dependent intrinsic property of muscle in humans and cats.
    Frigon A; Thompson CK; Johnson MD; Manuel M; Hornby TG; Heckman CJ
    J Neurosci; 2011 Apr; 31(15):5579-88. PubMed ID: 21490198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans.
    Magalhães FH; de Toledo DR; Kohn AF
    J Neuroeng Rehabil; 2013 Mar; 10():32. PubMed ID: 23531240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles.
    Magalhães FH; Kohn AF
    J Neuroeng Rehabil; 2010 Jun; 7():26. PubMed ID: 20537167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.
    Normann RA; Dowden BR; Frankel MA; Wilder AM; Hiatt SD; Ledbetter NM; Warren DA; Clark GA
    J Neural Eng; 2012 Apr; 9(2):026019. PubMed ID: 22414699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation.
    Baldwin ER; Klakowicz PM; Collins DF
    J Appl Physiol (1985); 2006 Jul; 101(1):228-40. PubMed ID: 16627680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force.
    Dideriksen J; Leerskov K; Czyzewska M; Rasmussen R
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2737-2745. PubMed ID: 28237919
    [No Abstract]   [Full Text] [Related]  

  • 7. Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes.
    Grill WM; Mortimer JT
    J Neurosci Methods; 1996 Mar; 65(1):43-50. PubMed ID: 8815307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
    Donelan JM; Pearson KG
    J Neurophysiol; 2004 Oct; 92(4):2093-104. PubMed ID: 15381742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleaved, multisite electrical stimulation of cat sciatic nerve produces fatigue-resistant, ripple-free motor responses.
    McDonnall D; Clark GA; Normann RA
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):208-15. PubMed ID: 15218935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersegmental neuronal pathways in sacrococcygeal spinal cord (S3-Co3) activated by electrical stimulation of tail muscle nerves with low threshold in low spinal cats.
    Akatani J; Wada N; Kanda K
    Brain Res; 2002 Jan; 924(1):30-8. PubMed ID: 11743992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive proprioceptive feedback elicited by isometric contractions of ankle flexors on pretibial motoneurons in cats.
    Brizzi L; Ting LH; Zytnicki D
    J Neurophysiol; 2002 Nov; 88(5):2207-14. PubMed ID: 12424262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movements elicited by electrical stimulation of muscles, nerves, intermediate spinal cord, and spinal roots in anesthetized and decerebrate cats.
    Aoyagi Y; Mushahwar VK; Stein RB; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):1-11. PubMed ID: 15068182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmental reflex action in normal and decerebrate cats.
    Hoffer JA; Leonard TR; Cleland CL; Sinkjaer T
    J Neurophysiol; 1990 Nov; 64(5):1611-24. PubMed ID: 2283543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation of transplanted motoneurons improves motor unit formation.
    Liu Y; Grumbles RM; Thomas CK
    J Neurophysiol; 2014 Aug; 112(3):660-70. PubMed ID: 24848463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.
    Tarler MD; Mortimer JT
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):227-35. PubMed ID: 14518785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency submaximal stimulation over muscle evokes centrally generated forces in human upper limb skeletal muscles.
    Blouin JS; Walsh LD; Nickolls P; Gandevia SC
    J Appl Physiol (1985); 2009 Feb; 106(2):370-7. PubMed ID: 19008485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
    Degtyarenko AM; Simon ES; Norden-Krichmar T; Burke RE
    J Neurophysiol; 1998 Jan; 79(1):447-63. PubMed ID: 9425213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of reversible dorsal cold block on the persistence of inhibition generated by spinal reflexes.
    Miller JF; Paul KD; Jiang B; Rymer WZ; Heckman CJ
    Exp Brain Res; 1995; 107(2):205-14. PubMed ID: 8773240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rescue of neuronal function by cross-regeneration of cutaneous afferents into muscle in cats.
    Nishimura H; Johnson RD; Munson JB
    J Neurophysiol; 1993 Jul; 70(1):213-22. PubMed ID: 8395575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large involuntary forces consistent with plateau-like behavior of human motoneurons.
    Collins DF; Burke D; Gandevia SC
    J Neurosci; 2001 Jun; 21(11):4059-65. PubMed ID: 11356893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.