BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21490250)

  • 1. The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster.
    Heinrich EC; Farzin M; Klok CJ; Harrison JF
    J Exp Biol; 2011 May; 214(Pt 9):1419-27. PubMed ID: 21490250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitation of size by hypoxia in the fruit fly Drosophila melanogaster.
    Peck LS; Maddrell SH
    J Exp Zool A Comp Exp Biol; 2005 Nov; 303(11):968-75. PubMed ID: 16217805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae.
    Farzin M; Albert T; Pierce N; VandenBrooks JM; Dodge T; Harrison JF
    J Insect Physiol; 2014 Sep; 68():23-9. PubMed ID: 25008193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila S6 kinase: a regulator of cell size.
    Montagne J; Stewart MJ; Stocker H; Hafen E; Kozma SC; Thomas G
    Science; 1999 Sep; 285(5436):2126-9. PubMed ID: 10497130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single and multigenerational responses of body mass to atmospheric oxygen concentrations in Drosophila melanogaster : evidence for roles of plasticity and evolution.
    Klok CJ; Hubb AJ; Harrison JF
    J Evol Biol; 2009 Dec; 22(12):2496-504. PubMed ID: 19878502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of oxygen on growth and size: synthesis of molecular, organismal, and evolutionary studies with Drosophila melanogaster.
    Harrison JF; Haddad GG
    Annu Rev Physiol; 2011; 73():95-113. PubMed ID: 20936942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pupa Stage Is the Most Sensitive to Hypoxia in
    Stobdan T; Wen NJ; Lu-Bo Y; Zhou D; Haddad GG
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forces shaping the Drosophila wing.
    Diaz de la Loza MC; Thompson BJ
    Mech Dev; 2017 Apr; 144(Pt A):23-32. PubMed ID: 27784612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastic and evolved responses of larval tracheae and mass to varying atmospheric oxygen content in Drosophila melanogaster.
    Henry JR; Harrison JF
    J Exp Biol; 2004 Sep; 207(Pt 20):3559-67. PubMed ID: 15339952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of increased partial pressures of oxygen on the embryonic and post-embryonic development of drosophila melanogaster.
    Smith SL; Gottlieb SF
    Aviat Space Environ Med; 1975 Feb; 46(2):161-9. PubMed ID: 803832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of global patterns of planar polarity during growth of the Drosophila wing epithelium.
    Sagner A; Merkel M; Aigouy B; Gaebel J; Brankatschk M; Jülicher F; Eaton S
    Curr Biol; 2012 Jul; 22(14):1296-301. PubMed ID: 22727699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species.
    Enriquez T; Lievens V; Nieberding CM; Visser B
    Sci Rep; 2022 Jul; 12(1):12855. PubMed ID: 35896578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of developmental plasticity on heat tolerance may be mediated by changes in cell size in Drosophila melanogaster.
    Verspagen N; Leiva FP; Janssen IM; Verberk WCEP
    Insect Sci; 2020 Dec; 27(6):1244-1256. PubMed ID: 31829515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular Responses in Drosophila melanogaster Following Teratogen Exposure.
    Bianchini MC; Portela JLR; Puntel RL; Ávila DS
    Methods Mol Biol; 2018; 1797():243-276. PubMed ID: 29896697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependent larval resource allocation shaping adult body size in Drosophila melanogaster.
    Bochdanovits Z; De Jong G
    J Evol Biol; 2003 Nov; 16(6):1159-67. PubMed ID: 14640407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short communication: Context matters: Adult size is contingent on embryonic temperature in Drosophila melanogaster.
    Hoover MM; Marks C
    J Therm Biol; 2021 Jan; 95():102820. PubMed ID: 33454028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the changes in life cycle parameters of Drosophila melanogaster exposed to fluorinated insecticide, cryolite.
    Podder S; Roy S
    Toxicol Ind Health; 2015 Dec; 31(12):1341-7. PubMed ID: 23847017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time analysis of Drosophila post-embryonic haemocyte behaviour.
    Sampson CJ; Williams MJ
    PLoS One; 2012; 7(1):e28783. PubMed ID: 22242151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical oxygen partial pressures and maximal tracheal conductances for Drosophila melanogaster reared for multiple generations in hypoxia or hyperoxia.
    Klok CJ; Kaiser A; Lighton JR; Harrison JF
    J Insect Physiol; 2010 May; 56(5):461-9. PubMed ID: 19682996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and developmental responses of body and cell size in Drosophila; effects of polyploidy and genome configuration.
    Jalal M; Andersen T; Hessen DO
    J Therm Biol; 2015 Jul; 51():1-14. PubMed ID: 25965012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.