These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21490262)

  • 1. Whole-body kinematics of a fruit bat reveal the influence of wing inertia on body accelerations.
    Iriarte-Díaz J; Riskin DK; Willis DJ; Breuer KS; Swartz SM
    J Exp Biol; 2011 May; 214(Pt 9):1546-53. PubMed ID: 21490262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis.
    Hubel TY; Riskin DK; Swartz SM; Breuer KS
    J Exp Biol; 2010 Oct; 213(Pt 20):3427-40. PubMed ID: 20889823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production.
    Riskin DK; Iriarte-Díaz J; Middleton KM; Breuer KS; Swartz SM
    J Exp Biol; 2010 Dec; 213(Pt 23):4110-22. PubMed ID: 21075953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematics of slow turn maneuvering in the fruit bat Cynopterus brachyotis.
    Iriarte-Díaz J; Swartz SM
    J Exp Biol; 2008 Nov; 211(Pt 21):3478-89. PubMed ID: 18931320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers.
    Lindhe Norberg UM; Winter Y
    J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the complexity of bat wing kinematics.
    Riskin DK; Willis DJ; Iriarte-Díaz J; Hedrick TL; Kostandov M; Chen J; Laidlaw DH; Breuer KS; Swartz SM
    J Theor Biol; 2008 Oct; 254(3):604-15. PubMed ID: 18621062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climbing flight performance and load carrying in lesser dog-faced fruit bats (Cynopterus brachyotis).
    MacAyeal LC; Riskin DK; Swartz SM; Breuer KS
    J Exp Biol; 2011 Mar; 214(Pt 5):786-93. PubMed ID: 21307065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia).
    Berg AM; Biewener AA
    J Exp Biol; 2010 May; 213(Pt 10):1651-8. PubMed ID: 20435815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial attitude control of a bat-like morphing-wing air vehicle.
    Colorado J; Barrientos A; Rossi C; Parra C
    Bioinspir Biomim; 2013 Mar; 8(1):016001. PubMed ID: 23211685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bat flight generates complex aerodynamic tracks.
    Hedenström A; Johansson LC; Wolf M; von Busse R; Winter Y; Spedding GR
    Science; 2007 May; 316(5826):894-7. PubMed ID: 17495171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing kinematics measurement and aerodynamics of hovering droneflies.
    Liu Y; Sun M
    J Exp Biol; 2008 Jul; 211(Pt 13):2014-25. PubMed ID: 18552290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematics of flight and the relationship to the vortex wake of a Pallas' long tongued bat (Glossophaga soricina).
    Wolf M; Johansson LC; von Busse R; Winter Y; Hedenström A
    J Exp Biol; 2010 Jun; 213(Pt 12):2142-53. PubMed ID: 20511529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurements of the kinematics and dynamics of bat flight.
    Tian X; Iriarte-Diaz J; Middleton K; Galvao R; Israeli E; Roemer A; Sullivan A; Song A; Swartz S; Breuer K
    Bioinspir Biomim; 2006 Dec; 1(4):S10-8. PubMed ID: 17671313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.
    Bahlman JW; Swartz SM; Breuer KS
    Bioinspir Biomim; 2014 Jun; 9(2):025008. PubMed ID: 24851830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2007 Jun; 210(Pt 11):1912-24. PubMed ID: 17515417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.