These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 21490265)

  • 1. Failure by fatigue in the field: a model of fatigue breakage for the macroalga Mazzaella, with validation.
    Mach KJ; Tepler SK; Staaf AV; Bohnhoff JC; Denny MW
    J Exp Biol; 2011 May; 214(Pt 9):1571-85. PubMed ID: 21490265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and biological consequences of repetitive loading: crack initiation and fatigue failure in the red macroalga Mazzaella.
    Mach KJ
    J Exp Biol; 2009 Apr; 212(Pt 7):961-76. PubMed ID: 19282493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To break a coralline: mechanical constraints on the size and survival of a wave-swept seaweed.
    Martone PT; Denny MW
    J Exp Biol; 2008 Nov; 211(Pt 21):3433-41. PubMed ID: 18931316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drag reduction in wave-swept macroalgae: alternative strategies and new predictions.
    Martone PT; Kost L; Boller M
    Am J Bot; 2012 May; 99(5):806-15. PubMed ID: 22523350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Techniques for predicting the lifetimes of wave-swept macroalgae: a primer on fracture mechanics and crack growth.
    Mach KJ; Nelson DV; Denny MW
    J Exp Biol; 2007 Jul; 210(Pt 13):2213-30. PubMed ID: 17575028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Death by small forces: a fracture and fatigue analysis of wave-swept macroalgae.
    Mach KJ; Hale BB; Denny MW; Nelson DV
    J Exp Biol; 2007 Jul; 210(Pt 13):2231-43. PubMed ID: 17575029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To bend a coralline: effect of joint morphology on flexibility and stress amplification in an articulated calcified seaweed.
    Martone PT; Denny MW
    J Exp Biol; 2008 Nov; 211(Pt 21):3421-32. PubMed ID: 18931315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indefatigable: an erect coralline alga is highly resistant to fatigue.
    Denny M; Mach K; Tepler S; Martone P
    J Exp Biol; 2013 Oct; 216(Pt 20):3772-80. PubMed ID: 24068348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The extraordinary joint material of an articulated coralline alga. I. Mechanical characterization of a key adaptation.
    Denny MW; King FA
    J Exp Biol; 2016 Jun; 219(Pt 12):1833-42. PubMed ID: 27307541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic consequences of flexural stiffness and buoyancy for seaweeds: a study using physical models.
    Stewart HL
    J Exp Biol; 2006 Jun; 209(Pt 11):2170-81. PubMed ID: 16709919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties.
    Denny MW; King FA
    J Exp Biol; 2016 Jun; 219(Pt 12):1843-50. PubMed ID: 27307542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A predictive fatigue model--II: Predicting the effect of resting times on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):59-67. PubMed ID: 12173740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow forces on seaweeds: field evidence for roles of wave impingement and organism inertia.
    Gaylord B; Denny MW; Koehl MA
    Biol Bull; 2008 Dec; 215(3):295-308. PubMed ID: 19098150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue strength testing of hip stems with statistical analysis.
    Ploeg HL; Wevers HW; Wyss UP; Bürgi M
    Biomed Mater Eng; 1999; 9(4):243-63. PubMed ID: 10674178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red algae respond to waves: morphological and mechanical variation in Mastocarpus papillatus along a gradient of force.
    Kitzes JA; Denny MW
    Biol Bull; 2005 Apr; 208(2):114-9. PubMed ID: 15837960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of radiation induced DNA double-strand breaks in human fibroblasts by PFGE: testing the applicability of random breakage models.
    Pinto M; Prise KM; Michael BD
    Int J Radiat Biol; 2002 May; 78(5):375-88. PubMed ID: 12020428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A statistical analysis of hair breakage. II. Repeated grooming experiments.
    Evans TA; Park K
    J Cosmet Sci; 2010; 61(6):439-55. PubMed ID: 21241634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of the wave-swept kelp
    Burnett NP; Koehl MAR
    J Exp Biol; 2019 Feb; 222(Pt 4):. PubMed ID: 30679240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.