These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21490286)

  • 21. Frontal eye field activity enhances object identification during covert visual search.
    Monosov IE; Thompson KG
    J Neurophysiol; 2009 Dec; 102(6):3656-72. PubMed ID: 19828723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Timing of spatial priming within the fronto-parietal attention network: A TMS study.
    Kehrer S; Kraft A; Koch SP; Kathmann N; Irlbacher K; Brandt SA
    Neuropsychologia; 2015 Jul; 74():30-6. PubMed ID: 25448855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reflexive and preparatory selection and suppression of salient information in the right and left posterior parietal cortex.
    Mevorach C; Humphreys GW; Shalev L
    J Cogn Neurosci; 2009 Jun; 21(6):1204-14. PubMed ID: 18752407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frontal eye field involvement in sustaining visual attention: evidence from transcranial magnetic stimulation.
    Esterman M; Liu G; Okabe H; Reagan A; Thai M; DeGutis J
    Neuroimage; 2015 May; 111():542-8. PubMed ID: 25655445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TMS of the right angular gyrus modulates priming of pop-out in visual search: combined TMS-ERP evidence.
    Taylor PC; Muggleton NG; Kalla R; Walsh V; Eimer M
    J Neurophysiol; 2011 Dec; 106(6):3001-9. PubMed ID: 21880940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual selection and posterior parietal cortex: effects of repetitive transcranial magnetic stimulation on partial report analyzed by Bundesen's theory of visual attention.
    Hung J; Driver J; Walsh V
    J Neurosci; 2005 Oct; 25(42):9602-12. PubMed ID: 16237165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Left frontal eye field remembers "where" but not "what".
    Campana G; Cowey A; Casco C; Oudsen I; Walsh V
    Neuropsychologia; 2007 Jun; 45(10):2340-5. PubMed ID: 17449069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of attention and detection signals during visual search.
    Shulman GL; McAvoy MP; Cowan MC; Astafiev SV; Tansy AP; d'Avossa G; Corbetta M
    J Neurophysiol; 2003 Nov; 90(5):3384-97. PubMed ID: 12917383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention.
    Grosbras MH; Paus T
    J Cogn Neurosci; 2002 Oct; 14(7):1109-20. PubMed ID: 12419133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contribution of the human PPC to the orienting of visuospatial attention during smooth pursuit.
    Drew AS; van Donkelaar P
    Exp Brain Res; 2007 May; 179(1):65-73. PubMed ID: 17221223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of FEF to Attentional Periodicity during Visual Search: A TMS Study.
    Dugué L; Beck AA; Marque P; VanRullen R
    eNeuro; 2019; 6(3):. PubMed ID: 31175148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating frontal and parietal contributions to spatial working memory with repetitive transcranial magnetic stimulation.
    Hamidi M; Tononi G; Postle BR
    Brain Res; 2008 Sep; 1230():202-10. PubMed ID: 18662678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcranial magnetic stimulation over posterior parietal cortex disrupts transsaccadic memory of multiple objects.
    Prime SL; Vesia M; Crawford JD
    J Neurosci; 2008 Jul; 28(27):6938-49. PubMed ID: 18596168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interaction of brain regions during visual search processing as revealed by transcranial magnetic stimulation.
    Ellison A; Lane AR; Schenk T
    Cereb Cortex; 2007 Nov; 17(11):2579-84. PubMed ID: 17218479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the right frontal eye field in overt visual attention deployment as assessed by free visual exploration.
    Cazzoli D; Jung S; Nyffeler T; Nef T; Wurtz P; Mosimann UP; Müri RM
    Neuropsychologia; 2015 Jul; 74():37-41. PubMed ID: 25613645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention.
    Simpson GV; Weber DL; Dale CL; Pantazis D; Bressler SL; Leahy RM; Luks TL
    J Neurosci; 2011 Sep; 31(39):13880-9. PubMed ID: 21957250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention.
    Bressler SL; Tang W; Sylvester CM; Shulman GL; Corbetta M
    J Neurosci; 2008 Oct; 28(40):10056-61. PubMed ID: 18829963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the posterior parietal cortex in the initiation of saccades and vergence: right/left functional asymmetry.
    Kapoula Z; Yang Q; Coubard O; Daunys G; Orssaud C
    Ann N Y Acad Sci; 2005 Apr; 1039():184-97. PubMed ID: 15826973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TMS over posterior parietal cortex disrupts trans-saccadic visual stability.
    Collins T; Jacquet PO
    Brain Stimul; 2018; 11(2):390-399. PubMed ID: 29246747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.