These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 21490385)

  • 1. A model for multi-energy x-ray analysis.
    Midgley SM
    Phys Med Biol; 2011 May; 56(10):2943-62. PubMed ID: 21490385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials analysis using x-ray linear attenuation coefficient measurements at four photon energies.
    Midgley SM
    Phys Med Biol; 2005 Sep; 50(17):4139-57. PubMed ID: 16177536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating photon interaction coefficients from single energy x-ray CT.
    Midgley SM
    Phys Med Biol; 2012 Dec; 57(23):8079-98. PubMed ID: 23159870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility study for a novel method of dual energy x-ray analysis.
    Midgley SM
    Phys Med Biol; 2011 Sep; 56(17):5599-619. PubMed ID: 21828902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study for DEXA using synchrotron CT at 20-35 keV.
    Midgley SM
    Phys Med Biol; 2013 Feb; 58(4):1185-205. PubMed ID: 23369847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-energy X-ray analysis using synchrotron computed tomography at 35 and 60 keV for the estimation of photon interaction coefficients describing attenuation and energy absorption.
    Midgley S; Schleich N
    J Synchrotron Radiat; 2015 May; 22(3):807-18. PubMed ID: 25931101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.
    Midgley SM
    Phys Med Biol; 2004 Jan; 49(2):307-25. PubMed ID: 15083673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are all photon radiations similar in large absorbers?--a comparison of electron spectra.
    Kellerer AM; Roos H
    Radiat Prot Dosimetry; 2005; 113(3):245-50. PubMed ID: 15695239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.
    Aslam ; Waker AJ
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):467-70. PubMed ID: 21183541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy.
    Robar JL
    Phys Med Biol; 2006 Nov; 51(21):5487-504. PubMed ID: 17047265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.
    Tsechanski A; Krutman Y; Faermann S
    Phys Med Biol; 2005 Dec; 50(23):5629-39. PubMed ID: 16306657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-equivalent materials for construction of tomographic dosimetry phantoms in pediatric radiology.
    Jones AK; Hintenlang DE; Bolch WE
    Med Phys; 2003 Aug; 30(8):2072-81. PubMed ID: 12945973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the x-ray mass energy-absorption coefficient of air using 3 keV to 10 keV synchrotron radiation.
    Büermann L; Grosswendt B; Kramer HM; Selbach HJ; Gerlach M; Hoffmann M; Krumrey M
    Phys Med Biol; 2006 Oct; 51(20):5125-50. PubMed ID: 17019029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Plasma and Energetic Particles in Neptune's Magnetosphere.
    Krimigis SM; Armstrong TP; Axford WI; Bostrom CO; Cheng AF; Gloeckler G; Hamilton DC; Keath EP; Lanzerotti LJ; Mauk BH; Van Allen JA
    Science; 1989 Dec; 246(4936):1483-9. PubMed ID: 17756004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions.
    Kurudirek M; Aygun M; Erzeneoğlu SZ
    Appl Radiat Isot; 2010 Jun; 68(6):1006-11. PubMed ID: 20080413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers.
    Kucuk N; Cakir M; Isitman NA
    Radiat Prot Dosimetry; 2013 Jan; 153(1):127-34. PubMed ID: 22645382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of radiation attenuation coefficients, effective atomic numbers and electron densities for some building materials.
    Damla N; Baltas H; Celik A; Kiris E; Cevik U
    Radiat Prot Dosimetry; 2012 Jul; 150(4):541-9. PubMed ID: 22128356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of linear attenuation coefficients from CT numbers for low-energy photons.
    Watanabe Y
    Phys Med Biol; 1999 Sep; 44(9):2201-11. PubMed ID: 10495115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous small- and wide-angle scattering at high X-ray energies.
    Daniels JE; Pontoni D; Hoo RP; Honkimäki V
    J Synchrotron Radiat; 2010 Jul; 17(4):473-8. PubMed ID: 20567079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass attenuation coefficients of natural Rhizophora spp. wood for X-rays in the 15.77-25.27 keV range.
    Shakhreet BZ; Bauk S; Tajuddin AA; Shukri A
    Radiat Prot Dosimetry; 2009 Jul; 135(1):47-53. PubMed ID: 19482883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.