These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21490802)

  • 1. PtdIns 3-Kinase Orchestrates Autophagosome Formation in Yeast.
    Obara K; Ohsumi Y
    J Lipids; 2011; 2011():498768. PubMed ID: 21490802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and function of PtdIns(3)P in autophagy.
    Obara K; Ohsumi Y
    Autophagy; 2008 Oct; 4(7):952-4. PubMed ID: 18769109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function.
    Obara K; Sekito T; Niimi K; Ohsumi Y
    J Biol Chem; 2008 Aug; 283(35):23972-80. PubMed ID: 18586673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae.
    Obara K; Noda T; Niimi K; Ohsumi Y
    Genes Cells; 2008 Jun; 13(6):537-47. PubMed ID: 18533003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation.
    Kotani T; Kirisako H; Koizumi M; Ohsumi Y; Nakatogawa H
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10363-10368. PubMed ID: 30254161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy.
    Nair U; Cao Y; Xie Z; Klionsky DJ
    J Biol Chem; 2010 Apr; 285(15):11476-88. PubMed ID: 20154084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18.
    Watanabe Y; Kobayashi T; Yamamoto H; Hoshida H; Akada R; Inagaki F; Ohsumi Y; Noda NN
    J Biol Chem; 2012 Sep; 287(38):31681-90. PubMed ID: 22851171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential and distinct roles of phosphatidylinositol 4-kinases, Pik1p and Stt4p, in yeast autophagy.
    Kurokawa Y; Konishi R; Yoshida A; Tomioku K; Futagami T; Tamaki H; Tanabe K; Fujita A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Sep; 1864(9):1214-1225. PubMed ID: 31125705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy.
    Wurmser AE; Emr SD
    J Cell Biol; 2002 Aug; 158(4):761-72. PubMed ID: 12186856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How phosphoinositides shape autophagy in plant cells.
    Chung T
    Plant Sci; 2019 Apr; 281():146-158. PubMed ID: 30824047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nuclear membrane-derived structure associated with Atg8 is involved in the sequestration of selective cargo, the Cvt complex, during autophagosome formation in yeast.
    Baba M; Tomonaga S; Suzuki M; Gen M; Takeda E; Matsuura A; Kamada Y; Baba N
    Autophagy; 2019 Mar; 15(3):423-437. PubMed ID: 30238844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation.
    Nakatogawa H; Ohbayashi S; Sakoh-Nakatogawa M; Kakuta S; Suzuki SW; Kirisako H; Kondo-Kakuta C; Noda NN; Yamamoto H; Ohsumi Y
    J Biol Chem; 2012 Aug; 287(34):28503-7. PubMed ID: 22778255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities.
    Wurmser AE; Emr SD
    EMBO J; 1998 Sep; 17(17):4930-42. PubMed ID: 9724630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane curvature response in autophagy.
    Wilz L; Fan W; Zhong Q
    Autophagy; 2011 Oct; 7(10):1249-50. PubMed ID: 21738011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells.
    Kishi-Itakura C; Koyama-Honda I; Itakura E; Mizushima N
    J Cell Sci; 2014 Sep; 127(Pt 18):4089-102. PubMed ID: 25052093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae.
    Suzuki K; Akioka M; Kondo-Kakuta C; Yamamoto H; Ohsumi Y
    J Cell Sci; 2013 Jun; 126(Pt 11):2534-44. PubMed ID: 23549786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Essential roles of phosphatidylinositol 4-phosphate phosphatases Sac1p and Sjl3p in yeast autophagosome formation.
    Muramoto M; Yamakuchi Y; Konishi R; Koudatsu S; Tomikura H; Fukuda K; Kuriyama S; Kurokawa Y; Masatani T; Tamaki H; Fujita A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2022 Sep; 1867(9):159184. PubMed ID: 35640825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatidylinositol 4-phosphate on Rab7-positive autophagosomes revealed by the freeze-fracture replica labeling.
    Kurokawa Y; Yoshida A; Fujii E; Tomioku K; Hayashi H; Tanabe K; Fujita A
    Traffic; 2019 Jan; 20(1):82-95. PubMed ID: 30426618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries.
    Cheng J; Fujita A; Yamamoto H; Tatematsu T; Kakuta S; Obara K; Ohsumi Y; Fujimoto T
    Nat Commun; 2014; 5():3207. PubMed ID: 24492518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autophagosome formation and molecular mechanism of autophagy.
    Tanida I
    Antioxid Redox Signal; 2011 Jun; 14(11):2201-14. PubMed ID: 20712405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.