BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21491051)

  • 1. Enhanced translocation of poly(dt)45 through an α-hemolysin nanopore by binding with antibody.
    Ying YL; Li DW; Li Y; Lee JS; Long YT
    Chem Commun (Camb); 2011 May; 47(20):5690-2. PubMed ID: 21491051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore.
    Ying YL; Wang HY; Sutherland TC; Long YT
    Small; 2011 Jan; 7(1):87-94. PubMed ID: 21086519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition.
    Cabello-Aguilar S; Balme S; Chaaya AA; Bechelany M; Balanzat E; Janot JM; Pochat-Bohatier C; Miele P; Dejardin P
    Nanoscale; 2013 Oct; 5(20):9582-6. PubMed ID: 24057036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forming an alpha-hemolysin nanopore for single-molecule analysis.
    Jetha NN; Wiggin M; Marziali A
    Methods Mol Biol; 2009; 544():113-27. PubMed ID: 19488697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of single-molecule kinetics mediated by weak hydrogen bonds within a biological nanopore.
    Asandei A; Apetrei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2011 Jan; 27(1):19-24. PubMed ID: 21128603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore sequencing technology: nanopore preparations.
    Rhee M; Burns MA
    Trends Biotechnol; 2007 Apr; 25(4):174-81. PubMed ID: 17320228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive simultaneous detection of lead(II) and barium(II) with G-quadruplex DNA in α-hemolysin nanopore.
    Yang C; Liu L; Zeng T; Yang D; Yao Z; Zhao Y; Wu HC
    Anal Chem; 2013 Aug; 85(15):7302-7. PubMed ID: 23895278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrogating single proteins through nanopores: challenges and opportunities.
    Movileanu L
    Trends Biotechnol; 2009 Jun; 27(6):333-41. PubMed ID: 19394097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and [Formula: see text]-hemolysin nanopores
    Fennouri A; Ramiandrisoa J; Bacri L; Mathé J; Daniel R
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):127. PubMed ID: 30338424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the 64M-2 antibody Fab fragment in complex with a DNA dT(6-4)T photoproduct formed by ultraviolet radiation.
    Yokoyama H; Mizutani R; Satow Y; Komatsu Y; Ohtsuka E; Nikaido O
    J Mol Biol; 2000 Jun; 299(3):711-23. PubMed ID: 10835279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multichannel simultaneous measurements of single-molecule translocation in alpha-hemolysin nanopore array.
    Osaki T; Suzuki H; Le Pioufle B; Takeuchi S
    Anal Chem; 2009 Dec; 81(24):9866-70. PubMed ID: 20000639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognizing the translocation signals of individual peptide-oligonucleotide conjugates using an α-hemolysin nanopore.
    Ying YL; Li DW; Liu Y; Dey SK; Kraatz HB; Long YT
    Chem Commun (Camb); 2012 Sep; 48(70):8784-6. PubMed ID: 22832595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore.
    Wen S; Zeng T; Liu L; Zhao K; Zhao Y; Liu X; Wu HC
    J Am Chem Soc; 2011 Nov; 133(45):18312-7. PubMed ID: 21995430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal unfolding of proteins probed at the single molecule level using nanopores.
    Payet L; Martinho M; Pastoriza-Gallego M; Betton JM; Auvray L; Pelta J; Mathé J
    Anal Chem; 2012 May; 84(9):4071-6. PubMed ID: 22486207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor.
    Sexton LT; Horne LP; Sherrill SA; Bishop GW; Baker LA; Martin CR
    J Am Chem Soc; 2007 Oct; 129(43):13144-52. PubMed ID: 17918938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-based detection of mercury(II) ions through characteristic current signals in nanopores with high sensitivity and selectivity.
    Zeng T; Li T; Li Y; Liu L; Wang X; Liu Q; Zhao Y; Wu HC
    Nanoscale; 2014 Aug; 6(15):8579-84. PubMed ID: 24975417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications.
    Bonome EL; Cecconi F; Chinappi M
    Nanoscale; 2019 May; 11(20):9920-9930. PubMed ID: 31069350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.
    Zhang X; Price NE; Fang X; Yang Z; Gu LQ; Gates KS
    ACS Nano; 2015 Dec; 9(12):11812-9. PubMed ID: 26563913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peering into biological nanopore: a practical technology to single-molecule analysis.
    Wang HY; Ying YL; Li Y; Long YT
    Chem Asian J; 2010 Sep; 5(9):1952-61. PubMed ID: 20669216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid nanobilayers to host biological nanopores for DNA translocations.
    Göpfrich K; Kulkarni CV; Pambos OJ; Keyser UF
    Langmuir; 2013 Jan; 29(1):355-64. PubMed ID: 23214950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.