BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21491054)

  • 41. The role of charge distribution on the antimalarial activity of artemisinin analogues.
    Rafiee MA; Hadipour NL; Naderi-manesh H
    J Chem Inf Model; 2005; 45(2):366-70. PubMed ID: 15807501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alkylation of heme by the antimalarial drug artemisinin.
    Robert A; Coppel Y; Meunier B
    Chem Commun (Camb); 2002 Mar; (5):414-5. PubMed ID: 12120518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Recent advances in the study of artemisinin-related 1,2,4-trioxanes and ozonides (1,2,4-trioxolanes) as antimalarials].
    Yang ZS; Li Y
    Yao Xue Xue Bao; 2005 Dec; 40(12):1057-63. PubMed ID: 16496665
    [No Abstract]   [Full Text] [Related]  

  • 44. A continuous-flow process for the synthesis of artemisinin.
    Kopetzki D; Lévesque F; Seeberger PH
    Chemistry; 2013 Apr; 19(17):5450-6. PubMed ID: 23520059
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling the decomposition mechanism of artemisinin.
    Moles P; Oliva M; Safont VS
    J Phys Chem A; 2006 Jun; 110(22):7144-58. PubMed ID: 16737265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Literally Green Chemical Synthesis of Artemisinin from Plant Extracts.
    Triemer S; Gilmore K; Vu GT; Seeberger PH; Seidel-Morgenstern A
    Angew Chem Int Ed Engl; 2018 May; 57(19):5525-5528. PubMed ID: 29465820
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin.
    Corsello MA; Garg NK
    Nat Prod Rep; 2015 Mar; 32(3):359-66. PubMed ID: 25342519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research.
    Patel OPS; Beteck RM; Legoabe LJ
    Eur J Med Chem; 2021 Mar; 213():113193. PubMed ID: 33508479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Homology modeling and molecular docking study of translationally controlled tumor protein and artemisinin.
    Chae J; Choi I; Kim C
    Arch Pharm Res; 2006 Jan; 29(1):50-8. PubMed ID: 16491843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Artemisinin-Derived Dimers: Potent Antimalarial and Anticancer Agents.
    Fröhlich T; Çapcı Karagöz A; Reiter C; Tsogoeva SB
    J Med Chem; 2016 Aug; 59(16):7360-88. PubMed ID: 27010926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conversion of antimalarial drug artemisinin to a new series of tricyclic 1,2,4-trioxanes1.
    Singh C; Chaudhary S; Kanchan R; Puri SK
    Org Lett; 2007 Oct; 9(21):4327-9. PubMed ID: 17877363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reactions of captopril and epicaptopril with transition metal ions and hydroxyl radicals: an EPR spectroscopy study.
    Misík V; Mak IT; Stafford RE; Weglicki WB
    Free Radic Biol Med; 1993 Dec; 15(6):611-9. PubMed ID: 8138187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of an antimalarial synthetic trioxolane drug development candidate.
    Vennerstrom JL; Arbe-Barnes S; Brun R; Charman SA; Chiu FC; Chollet J; Dong Y; Dorn A; Hunziker D; Matile H; McIntosh K; Padmanilayam M; Santo Tomas J; Scheurer C; Scorneaux B; Tang Y; Urwyler H; Wittlin S; Charman WN
    Nature; 2004 Aug; 430(7002):900-4. PubMed ID: 15318224
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel dihydroxylated derivative of artemisinin from microbial transformation.
    Zhan Y; Wu Y; Xu F; Bai Y; Guan Y; Williamson JS; Liu B
    Fitoterapia; 2017 Jul; 120():93-97. PubMed ID: 28576722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antitumour and antimalarial activity of artemisinin-acridine hybrids.
    Jones M; Mercer AE; Stocks PA; La Pensée LJ; Cosstick R; Park BK; Kennedy ME; Piantanida I; Ward SA; Davies J; Bray PG; Rawe SL; Baird J; Charidza T; Janneh O; O'Neill PM
    Bioorg Med Chem Lett; 2009 Apr; 19(7):2033-7. PubMed ID: 19249201
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study on the mechanism of action of artemether against schistosomes: the identification of cysteine adducts of both carbon-centred free radicals derived from artemether.
    Wu WM; Chen YL; Zhai Z; Xiao SH; Wu YL
    Bioorg Med Chem Lett; 2003 May; 13(10):1645-7. PubMed ID: 12729632
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu).
    Meshnick SR; Yang YZ; Lima V; Kuypers F; Kamchonwongpaisan S; Yuthavong Y
    Antimicrob Agents Chemother; 1993 May; 37(5):1108-14. PubMed ID: 8517699
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism and kinetics studies of the atmospheric oxidation of p,p'-Dicofol by OH and NO
    Dang J; Tian S; Zhang Q
    Chemosphere; 2019 Mar; 219():645-654. PubMed ID: 30557720
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combating multi-drug resistant malaria parasite by inhibiting falcipain-2 and heme-polymerization: Artemisinin-peptidyl vinyl phosphonate hybrid molecules as new antimalarials.
    Aratikatla EK; Kalamuddin M; Rana KC; Datta G; Asad M; Sundararaman S; Malhotra P; Mohmmed A; Bhattacharya AK
    Eur J Med Chem; 2021 Aug; 220():113454. PubMed ID: 33901900
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetics of iron-mediated artemisinin degradation: effect of solvent composition and iron salt.
    Creek DJ; Chiu FC; Prankerd RJ; Charman SA; Charman WN
    J Pharm Sci; 2005 Aug; 94(8):1820-9. PubMed ID: 15986470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.