These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21491253)

  • 21. Physiology driven adaptivity for the numerical solution of the bidomain equations.
    Whiteley JP
    Ann Biomed Eng; 2007 Sep; 35(9):1510-20. PubMed ID: 17541825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability analysis of the POD reduced order method for solving the bidomain model in cardiac electrophysiology.
    Corrado C; Lassoued J; Mahjoub M; Zemzemi N
    Math Biosci; 2016 Feb; 272():81-91. PubMed ID: 26723278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forward Euler stability of the bidomain model of cardiac tissue.
    Puwal S; Roth BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):951-3. PubMed ID: 17518295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology.
    Pezzuto S; Hake J; Sundnes J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26685879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical solution of the bidomain equations.
    Linge S; Sundnes J; Hanslien M; Lines GT; Tveito A
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1895):1931-50. PubMed ID: 19380319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bidomain ECG simulations using an augmented monodomain model for the cardiac source.
    Bishop MJ; Plank G
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21536529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilized hybrid discontinuous Galerkin finite element method for the cardiac monodomain equation.
    Rocha BM; Dos Santos RW; Igreja I; Loula AFD
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3341. PubMed ID: 32293783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The use of isoparametric element of arbitrary hexahedron for solving 3-D thoracic potential distribution].
    Wang H; Wang Y; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Sep; 15(3):262-6. PubMed ID: 12553250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell.
    Neilson MP; Mackenzie JA; Webb SD; Insall RH
    Integr Biol (Camb); 2010 Nov; 2(11-12):687-95. PubMed ID: 20959932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solving the coupled system improves computational efficiency of the bidomain equations.
    Southern JA; Plank G; Vigmond EJ; Whiteley JP
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2404-12. PubMed ID: 19457741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology.
    Krishnamoorthi S; Sarkar M; Klug WS
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1243-66. PubMed ID: 23873868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational modeling of chemo-electro-mechanical coupling: a novel implicit monolithic finite element approach.
    Wong J; Göktepe S; Kuhl E
    Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1104-33. PubMed ID: 23798328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2006 Nov; 204(1):132-65. PubMed ID: 16904130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem.
    Nielsen BF; Cai X; Lysaker M
    Math Biosci; 2007 Dec; 210(2):523-53. PubMed ID: 17822722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.