These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21491324)

  • 21. The effectiveness of handheld ventilated sanders in reducing inhalable dust concentrations.
    Carlton GN; Patel KB; Johnson DL; Hall TA
    Appl Occup Environ Hyg; 2003 Jan; 18(1):51-6. PubMed ID: 12650549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposure to particulate matter on an Indian stone-crushing site.
    Semple S; Green DA; McAlpine G; Cowie H; Seaton A
    Occup Environ Med; 2008 May; 65(5):300-5. PubMed ID: 17681995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A pilot study of personal exposure to respirable and inhalable dust during the sanding and sawing of medium density fibreboard (MDF) and soft wood.
    Hursthouse A; Allan F; Rowley L; Smith F
    Int J Environ Health Res; 2004 Aug; 14(4):323-6. PubMed ID: 15369997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determinants of dust exposure in tunnel construction work.
    Bakke B; Stewart P; Eduard W
    Appl Occup Environ Hyg; 2002 Nov; 17(11):783-96. PubMed ID: 12419106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wood dust and formaldehyde exposures in the cabinet-making industry.
    Sass-Kortsak AM; Holness DL; Pilger CW; Nethercott JR
    Am Ind Hyg Assoc J; 1986 Dec; 47(12):747-53. PubMed ID: 3799474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.
    Collingwood S; Heitbrink WA
    J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exposure to dust and its particle size distribution in shoe manufacture and repair workplaces measured with GRIMM laser dust monitor.
    Stroszejn-Mrowca G; Szadkowska-Stańczyk I
    Int J Occup Med Environ Health; 2003; 16(4):321-8. PubMed ID: 14964641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dust emission rates from food processing.
    Lacey SE; Conroy L; Schoonover T; Franke J; Hedeker D; Forst L
    Ann Agric Environ Med; 2006; 13(2):251-7. PubMed ID: 17195997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Dust exposure assessment among construction workers in Poland, 2001-2005].
    Bujak-Pietrek S; Szadkowska-Stańczyk I
    Med Pr; 2009; 60(4):247-57. PubMed ID: 19928425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Airborne endotoxin associated with particles of different sizes and affected by water content in handled straw.
    Madsen AM; Nielsen SH
    Int J Hyg Environ Health; 2010 Jul; 213(4):278-84. PubMed ID: 20362504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exposures from chrysotile-containing joint compound: evaluation of new model relating respirable dust to fiber concentrations.
    Brorby GP; Sheehan PJ; Berman DW; Bogen KT; Holm SE
    Risk Anal; 2013 Jan; 33(1):161-76. PubMed ID: 22642316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The efficacy of local exhaust ventilation for controlling dust exposures during concrete surface grinding.
    Croteau GA; Flanagan ME; Camp JE; Seixas NS
    Ann Occup Hyg; 2004 Aug; 48(6):509-18. PubMed ID: 15298850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exposure to airborne nano-titanium dioxide during airless spray painting and sanding.
    West GH; Cooper MR; Burrelli LG; Dresser D; Lippy BE
    J Occup Environ Hyg; 2019 Mar; 16(3):218-228. PubMed ID: 30451647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of misting controls to reduce respirable silica exposure for brick cutting.
    Beamer BR; Shulman S; Maynard A; Williams D; Watkins D
    Ann Occup Hyg; 2005 Aug; 49(6):503-10. PubMed ID: 15845608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-zone model application to breathing zone and area welding fume concentration data.
    Boelter FW; Simmons CE; Berman L; Scheff P
    J Occup Environ Hyg; 2009 May; 6(5):298-306. PubMed ID: 19266377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Dust exposure in a pottery plant assessed by using GRIMM dust monitor].
    Woźniak H; Stroszejn-Mrowca G; Kita N
    Med Pr; 2002; 53(5):405-11. PubMed ID: 12577809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of exposure in epidemiological studies: the example of silica dust.
    Dahmann D; Taeger D; Kappler M; Büchte S; Morfeld P; Brüning T; Pesch B
    J Expo Sci Environ Epidemiol; 2008 Sep; 18(5):452-61. PubMed ID: 18059424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of personal exposure of workers to indium concentrations in total dust and its respirable fraction at three Japanese indium plants.
    Higashikubo I; Arito H; Eitaki Y; Ando K; Araki A; Shimizu H; Sakurai H
    Ind Health; 2019 Jun; 57(3):392-397. PubMed ID: 30068895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silica exposure during construction activities: statistical modeling of task-based measurements from the literature.
    Sauvé JF; Beaudry C; Bégin D; Dion C; Gérin M; Lavoué J
    Ann Occup Hyg; 2013 May; 57(4):432-43. PubMed ID: 23223272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.