These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 21491682)
1. Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces. Cain JP; Gassman PL; Wang H; Laskin A Phys Chem Chem Phys; 2010; 12(20):5206-18. PubMed ID: 21491682 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame. Cain J; Laskin A; Kholghy MR; Thomson MJ; Wang H Phys Chem Chem Phys; 2014 Dec; 16(47):25862-75. PubMed ID: 25354231 [TBL] [Abstract][Full Text] [Related]
3. Raman spectroscopy, mobility size and radiative emissions data for soot formed at increasing temperature and equivalence ratio in flames hotter than conventional combustion applications. Dasappa S; Camacho J Data Brief; 2021 Jun; 36():107064. PubMed ID: 34026968 [TBL] [Abstract][Full Text] [Related]
4. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration. Wang J; Richter H; Howard JB; Levendis YA; Carlson J Environ Sci Technol; 2002 Feb; 36(4):797-808. PubMed ID: 11878400 [TBL] [Abstract][Full Text] [Related]
5. Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator. Mueller L; Jakobi G; Orasche J; Karg E; Sklorz M; Abbaszade G; Weggler B; Jing L; Schnelle-Kreis J; Zimmermann R Anal Bioanal Chem; 2015 Aug; 407(20):5911-22. PubMed ID: 25711989 [TBL] [Abstract][Full Text] [Related]
6. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine. Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics simulation of soot formation during diesel combustion with oxygenated fuel addition. Chen C; Jiang X Phys Chem Chem Phys; 2020 Sep; 22(36):20829-20836. PubMed ID: 32914155 [TBL] [Abstract][Full Text] [Related]
9. Variations in surface functional groups, carbon chemical state and graphitization degree during thermal deactivation of diesel soot particles. Liu Y; Wu S; Fan C; Wang X; Liu F; Chen H J Environ Sci (China); 2023 Feb; 124():678-687. PubMed ID: 36182173 [TBL] [Abstract][Full Text] [Related]
10. Detailed Study of the Formation of Soot Precursors and Soot in Highly Controlled Ethylene(/Toluene) Counterflow Diffusion Flames. Gleason K; Gomez A J Phys Chem A; 2023 Jan; 127(1):276-285. PubMed ID: 36542816 [TBL] [Abstract][Full Text] [Related]
11. Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation. Paur HR; Baumann W; Mätzing H; Seifert H Nanotechnology; 2005 Jul; 16(7):S354-61. PubMed ID: 21727452 [TBL] [Abstract][Full Text] [Related]
12. A small porous-plug burner for studies of combustion chemistry and soot formation. Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223 [TBL] [Abstract][Full Text] [Related]
13. Formation and emission of large furans and oxygenated hydrocarbons from flames. Johansson KO; Dillstrom T; Monti M; El Gabaly F; Campbell MF; Schrader PE; Popolan-Vaida DM; Richards-Henderson NK; Wilson KR; Violi A; Michelsen HA Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8374-9. PubMed ID: 27410045 [TBL] [Abstract][Full Text] [Related]
14. UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames. Sgro LA; Minutolo P; Basile G; D'Alessio A Chemosphere; 2001; 42(5-7):671-80. PubMed ID: 11219693 [TBL] [Abstract][Full Text] [Related]
15. The Molecular Composition of Soot. Jacobson RS; Korte AR; Vertes A; Miller JH Angew Chem Int Ed Engl; 2020 Mar; 59(11):4484-4490. PubMed ID: 31917890 [TBL] [Abstract][Full Text] [Related]
16. Flame experiments at the advanced light source: new insights into soot formation processes. Hansen N; Skeen SA; Michelsen HA; Wilson KR; Kohse-Höinghaus K J Vis Exp; 2014 May; (87):. PubMed ID: 24894694 [TBL] [Abstract][Full Text] [Related]
17. Molecular content of nascent soot: Family characterization using two-step laser desorption laser ionization mass spectrometry. Sabbah H; Commodo M; Picca F; De Falco G; Minutolo P; D'Anna A; Joblin C Proc Combust Inst; 2021; 38(1):1241-1248. PubMed ID: 33850480 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the photochemical reactivity of soot particles derived from biofuels toward NO2. A kinetic and product study. Romanías MN; Dagaut P; Bedjanian Y; Andrade-Eiroa A; Shahla R; Emmanouil KS; Papadimitriou VC; Spyros A J Phys Chem A; 2015 Mar; 119(10):2006-15. PubMed ID: 25686032 [TBL] [Abstract][Full Text] [Related]
19. Infrared spectral soot emission for robust and high-fidelity flame thermometry. Ma L; Du W; Wen D; Wang Y Opt Lett; 2023 Feb; 48(4):980-983. PubMed ID: 36790994 [TBL] [Abstract][Full Text] [Related]
20. Reduction of PAH and soot precursors in benzene flames by addition of ethanol. Golea D; Rezgui Y; Guemini M; Hamdane S J Phys Chem A; 2012 Apr; 116(14):3625-42. PubMed ID: 22429107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]