These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21491865)

  • 1. Effect of electric field on liquid infiltration into hydrophobic nanopores.
    Xu B; Qiao Y; Zhou Q; Chen X
    Langmuir; 2011 May; 27(10):6349-57. PubMed ID: 21491865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally responsive fluid behaviors in hydrophobic nanopores.
    Liu L; Zhao J; Culligan PJ; Qiao Y; Chen X
    Langmuir; 2009 Oct; 25(19):11862-8. PubMed ID: 19621904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of water infiltration into conical hydrophobic nanopores.
    Liu L; Zhao J; Yin CY; Culligan PJ; Chen X
    Phys Chem Chem Phys; 2009 Aug; 11(30):6520-4. PubMed ID: 19809685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study on energy dissipation of electrolytes in nanopores.
    Zhao J; Culligan PJ; Germaine JT; Chen X
    Langmuir; 2009 Nov; 25(21):12687-96. PubMed ID: 19791780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of fluid transport in nanopores.
    Xu B; Wang B; Park T; Qiao Y; Zhou Q; Chen X
    J Chem Phys; 2012 May; 136(18):184701. PubMed ID: 22583303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electric fields on contact angle and surface tension of drops.
    Bateni A; Laughton S; Tavana H; Susnar SS; Amirfazli A; Neumann AW
    J Colloid Interface Sci; 2005 Mar; 283(1):215-22. PubMed ID: 15694441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale wetting under electric field from molecular simulations.
    Daub CD; Bratko D; Luzar A
    Top Curr Chem; 2012; 307():155-79. PubMed ID: 21769717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of field direction on electrowetting in a nanopore.
    Bratko D; Daub CD; Leung K; Luzar A
    J Am Chem Soc; 2007 Mar; 129(9):2504-10. PubMed ID: 17284031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of wall roughness on fluid transport resistance in nanopores.
    Xu B; Li Y; Park T; Chen X
    J Chem Phys; 2011 Oct; 135(14):144703. PubMed ID: 22010727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.
    Su J; Guo H
    ACS Nano; 2011 Jan; 5(1):351-9. PubMed ID: 21162530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model.
    Patel S; Brooks CL
    J Chem Phys; 2005 Jan; 122(2):024508. PubMed ID: 15638599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular simulation of ion transport in silica nanopores.
    Shirono K; Tatsumi N; Daiguji H
    J Phys Chem B; 2009 Jan; 113(4):1041-7. PubMed ID: 19123824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces.
    Giovambattista N; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2009 Oct; 113(42):13723-34. PubMed ID: 19435300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric-field-controlled water and ion permeation of a hydrophobic nanopore.
    Dzubiella J; Hansen JP
    J Chem Phys; 2005 Jun; 122(23):234706. PubMed ID: 16008472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field induced switching behaviors of monolayer-modified silicon surfaces: surface designs and molecular dynamics simulations.
    Pei Y; Ma J
    J Am Chem Soc; 2005 May; 127(18):6802-13. PubMed ID: 15869303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore Morphology Determines Spontaneous Liquid Extrusion from Nanopores.
    Amabili M; Grosu Y; Giacomello A; Meloni S; Zaki A; Bonilla F; Faik A; Casciola CM
    ACS Nano; 2019 Feb; 13(2):1728-1738. PubMed ID: 30653291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular simulation study of vapor-liquid critical properties of a simple fluid in attractive slit pores: crossover from 3D to 2D.
    Singh SK; Saha AK; Singh JK
    J Phys Chem B; 2010 Apr; 114(12):4283-92. PubMed ID: 20218567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in the determination of solid surface tensions from contact angles.
    Tavana H; Neumann AW
    Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water confinement in hydrophobic nanopores. Pressure-induced wetting and drying.
    Smirnov S; Vlassiouk I; Takmakov P; Rios F
    ACS Nano; 2010 Sep; 4(9):5069-75. PubMed ID: 20690599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.