These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 21492454)

  • 21. Identification of candidate genes associated with positive and negative heterosis in rice.
    Venu RC; Ma J; Jia Y; Liu G; Jia MH; Nobuta K; Sreerekha MV; Moldenhauer K; McClung AM; Meyers BC; Wang GL
    PLoS One; 2014; 9(4):e95178. PubMed ID: 24743656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Mediator subunit OsMED15a is a transcriptional co-regulator of seed size/weight-modulating genes in rice.
    Dwivedi N; Maji S; Waseem M; Thakur P; Kumar V; Parida SK; Thakur JK
    Biochim Biophys Acta Gene Regul Mech; 2019 Oct; 1862(10):194432. PubMed ID: 31525461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional profiling and in silico analysis of Dof transcription factor gene family for understanding their regulation during seed development of rice Oryza sativa L.
    Gaur VS; Singh US; Kumar A
    Mol Biol Rep; 2011 Apr; 38(4):2827-48. PubMed ID: 21113680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice.
    Liu X; Guo T; Wan X; Wang H; Zhu M; Li A; Su N; Shen Y; Mao B; Zhai H; Mao L; Wan J
    BMC Genomics; 2010 Dec; 11():730. PubMed ID: 21192807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice.
    Pham HA; Cho K; Tran AD; Chandra D; So J; Nguyen HTT; Sang H; Lee JY; Han O
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice.
    Wang L; Wang D; Yang Z; Jiang S; Qu J; He W; Liu Z; Xing J; Ma Y; Lin Q; Yu F
    Sci China Life Sci; 2021 Feb; 64(2):294-310. PubMed ID: 32840735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A single nucleotide substitution at the 3'-end of SBPase gene involved in Calvin cycle severely affects plant growth and grain yield in rice.
    Li C; Li N; Huang R; Chen C; Guo J; Yang X; Zhang X; Sun C; Deng X; Wang P
    BMC Plant Biol; 2020 Jul; 20(1):345. PubMed ID: 32698774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development.
    Wei X; Jiao G; Lin H; Sheng Z; Shao G; Xie L; Tang S; Xu Q; Hu P
    J Integr Plant Biol; 2017 Feb; 59(2):134-153. PubMed ID: 27957808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes.
    Dametto A; Sperotto RA; Adamski JM; Blasi ÉA; Cargnelutti D; de Oliveira LF; Ricachenevsky FK; Fregonezi JN; Mariath JE; da Cruz RP; Margis R; Fett JP
    Plant Sci; 2015 Sep; 238():1-12. PubMed ID: 26259169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.
    Chen L; Huang Y; Xu M; Cheng Z; Zhang D; Zheng J
    PLoS One; 2016; 11(7):e0159238. PubMed ID: 27415428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-Wide Association Study Using Historical Breeding Populations Discovers Genomic Regions Involved in High-Quality Rice.
    Quero G; Gutiérrez L; Monteverde E; Blanco P; Pérez de Vida F; Rosas J; Fernández S; Garaycochea S; McCouch S; Berberian N; Simondi S; Bonnecarrère V
    Plant Genome; 2018 Nov; 11(3):. PubMed ID: 30512035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping QTL main and interaction influences on milling quality in elite US rice germplasm.
    Nelson JC; McClung AM; Fjellstrom RG; Moldenhauer KA; Boza E; Jodari F; Oard JH; Linscombe S; Scheffler BE; Yeater KM
    Theor Appl Genet; 2011 Feb; 122(2):291-309. PubMed ID: 20857082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Down-Regulation of Rice Glutelin by
    Chandra D; Cho K; Pham HA; Lee JY; Han O
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation.
    Yamakawa H; Hakata M
    Plant Cell Physiol; 2010 May; 51(5):795-809. PubMed ID: 20304786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the distribution of assimilation products and the characteristics of transcriptomes in rice by submergence during the ripening stage.
    Lee HS; Hwang WH; Jeong JH; Ahn SH; Baek JS; Jeong HY; Park HK; Ku BI; Yun JT; Lee GH; Choi KJ
    BMC Genomics; 2019 Jan; 20(1):18. PubMed ID: 30621581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new SNP in cyOsPPDK gene is associated with floury endosperm in Suweon 542.
    Wang H; Mo YJ; Im DE; Jang SG; Ham TH; Lee J; Jeung JU; Kwon SW
    Mol Genet Genomics; 2018 Oct; 293(5):1151-1158. PubMed ID: 29744589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique.
    Xu H; Gao Y; Wang J
    PLoS One; 2012; 7(2):e30646. PubMed ID: 22347394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat.
    Rangan P; Furtado A; Henry RJ
    BMC Genomics; 2017 Oct; 18(1):766. PubMed ID: 29020946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes.
    Tuncel A; Okita TW
    Plant Sci; 2013 Oct; 211():52-60. PubMed ID: 23987811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive analysis of AGPase genes uncovers their potential roles in starch biosynthesis in lotus seed.
    Sun H; Li J; Song H; Yang D; Deng X; Liu J; Wang Y; Ma J; Xiong Y; Liu Y; Yang M
    BMC Plant Biol; 2020 Oct; 20(1):457. PubMed ID: 33023477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.