These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21493398)

  • 41. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model.
    Devine EE; Hoffman MR; McCulloch TM; Jiang JJ
    Laryngoscope; 2017 Feb; 127(2):396-404. PubMed ID: 27223665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effect of extent of glottal incompetence on phonation in excised canine larynx models].
    Hou GH; Wang RQ; Yang S; Zhang Y; Xu XL; Zhuang PY
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Oct; 51(10):768-772. PubMed ID: 27765108
    [No Abstract]   [Full Text] [Related]  

  • 43. Vocal power and pressure-flow relationships in excised tiger larynges.
    Titze IR; Fitch WT; Hunter EJ; Alipour F; Montequin D; Armstrong DL; McGee J; Walsh EJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3866-73. PubMed ID: 21037066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration.
    Titze IR; Jiang JJ; Hsiao TY
    Ann Otol Rhinol Laryngol; 1993 Jan; 102(1 Pt 1):58-63. PubMed ID: 8420470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interspecies comparison of mucosal wave properties using high-speed digital imaging.
    Regner MF; Robitaille MJ; Jiang JJ
    Laryngoscope; 2010 Jun; 120(6):1188-94. PubMed ID: 20513038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the relation between subglottal pressure and fundamental frequency in phonation.
    Titze IR
    J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Angle of Epiglottis on Aerodynamic and Acoustic Parameters in Excised Canine Larynges.
    Zeng Q; Jiao Y; Huang X; Wang R; Bao H; Lamb JR; Le J; Zhuang P; Jiang J
    J Voice; 2019 Sep; 33(5):627-633. PubMed ID: 31543207
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two-dimensional analysis of vocal fold vibration in unilaterally atrophied larynges.
    Kobayashi J; Yumoto E; Hyodo M; Gyo K
    Laryngoscope; 2000 Mar; 110(3 Pt 1):440-6. PubMed ID: 10718435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of phonation instability pressure and phonation pressure range in excised larynges.
    Zhang Y; Reynders WJ; Jiang JJ; Tateya I
    J Speech Lang Hear Res; 2007 Jun; 50(3):611-20. PubMed ID: 17538104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gradation of stiffness of the mucosa inferior to the vocal fold.
    Goodyer E; Gunderson M; Dailey SH
    J Voice; 2010 May; 24(3):359-62. PubMed ID: 19303741
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges.
    Kataoka K; Kitajima K
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of vocal fold injury location on vibratory parameters in excised canine larynges.
    Krausert CR; Ying D; Choi SH; Hoffman MR; Jiang JJ
    Otolaryngol Head Neck Surg; 2013 Jan; 148(1):89-95. PubMed ID: 23070053
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of vocal fold adduction on the acoustic quality of phonation: ex vivo investigations.
    Regner MF; Tao C; Ying D; Olszewski A; Zhang Y; Jiang JJ
    J Voice; 2012 Nov; 26(6):698-705. PubMed ID: 22578437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glottal airflow resistance in excised pig, sheep, and cow larynges.
    Alipour F; Jaiswal S
    J Voice; 2009 Jan; 23(1):40-50. PubMed ID: 18023324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aerodynamic and nonlinear dynamic acoustic analysis of tension asymmetry in excised canine larynges.
    Devine EE; Bulleit EE; Hoffman MR; McCulloch TM; Jiang JJ
    J Speech Lang Hear Res; 2012 Dec; 55(6):1850-61. PubMed ID: 22562826
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurements of vocal fold tissue viscoelasticity: approaching the male phonatory frequency range.
    Chan RW
    J Acoust Soc Am; 2004 Jun; 115(6):3161-70. PubMed ID: 15237840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correspondence of electroglottographic closed quotient to vocal fold impact stress in excised canine larynges.
    Verdolini K; Chan R; Titze IR; Hess M; Bierhals W
    J Voice; 1998 Dec; 12(4):415-23. PubMed ID: 9988028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Young's modulus of canine vocal fold cover layers.
    Chhetri DK; Rafizadeh S
    J Voice; 2014 Jul; 28(4):406-10. PubMed ID: 24491497
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.