These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaluating polyvinylidene fluoride - carbon black composites as solid phase microextraction coatings for the detection of urinary volatile organic compounds by gas chromatography-mass spectrometry. Woollam M; Grocki P; Schulz E; Siegel AP; Deiss F; Agarwal M J Chromatogr A; 2022 Dec; 1685():463606. PubMed ID: 36370629 [TBL] [Abstract][Full Text] [Related]
3. An Optimized SPME-GC-MS Method for Volatile Metabolite Profiling of Different Alfalfa ( Yang DS; Lei Z; Bedair M; Sumner LW Molecules; 2021 Oct; 26(21):. PubMed ID: 34770882 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study. Mendes B; Gonçalves J; Câmara JS Talanta; 2012 Jan; 88():79-94. PubMed ID: 22265473 [TBL] [Abstract][Full Text] [Related]
5. Optimization of the extraction conditions of the volatile compounds from chili peppers by headspace solid phase micro-extraction. Junior SB; de Marchi Tavares de Melo A; Zini CA; Godoy HT J Chromatogr A; 2011 May; 1218(21):3345-50. PubMed ID: 21227437 [TBL] [Abstract][Full Text] [Related]
6. Chemical Approach to the Optimization of Conditions Using HS-SPME/GC-MS for Characterization of Volatile Compounds in Ramos ALCC; Nogueira LA; Silva MR; do Carmo Mazzinghy AC; Mariano APX; de Albuquerque Rodrigues TN; de Paula ACCFF; de Melo AC; Augusti R; de Araújo RLB; Lacerda ICA; Melo JOF Molecules; 2022 Aug; 27(15):. PubMed ID: 35956905 [TBL] [Abstract][Full Text] [Related]
7. The approach to sample acquisition and its impact on the derived human fecal microbiome and VOC metabolome. Couch RD; Navarro K; Sikaroodi M; Gillevet P; Forsyth CB; Mutlu E; Engen PA; Keshavarzian A PLoS One; 2013; 8(11):e81163. PubMed ID: 24260553 [TBL] [Abstract][Full Text] [Related]
8. Influence of the type of fiber coating and extraction time on foal dry-cured loin volatile compounds extracted by solid-phase microextraction (SPME). Lorenzo JM Meat Sci; 2014 Jan; 96(1):179-86. PubMed ID: 23896153 [TBL] [Abstract][Full Text] [Related]
9. Analysis of volatile components of cape gooseberry (Physalis peruviana L.) grown in Turkey by HS-SPME and GC-MS. Yilmaztekin M ScientificWorldJournal; 2014; 2014():796097. PubMed ID: 24741358 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of an improved, thin film solid phase microextraction based, standard gas generating vial for the repeatable generation of gaseous standards. Grandy JJ; Murtada K; Belinato JR; Suárez PAO; Pawliszyn J J Chromatogr A; 2020 Nov; 1632():461541. PubMed ID: 33059176 [TBL] [Abstract][Full Text] [Related]
11. Optimization of Headspace Solid-Phase Microextraction (HS-SPME) Parameters for the Analysis of Pyrazines in Yeast Extract via Gas Chromatography Mass Spectrometry (GC-MS). Raza A; Begum N; Song H; Li K; Li P J Food Sci; 2019 Aug; 84(8):2031-2041. PubMed ID: 31276204 [TBL] [Abstract][Full Text] [Related]
12. Sol-gel-based SPME fiber as a reliable sampling technique for studying biogenic volatile organic compounds released from Clostridium tetani. Ghader M; Shokoufi N; Es-Haghi A; Kargosha K Anal Bioanal Chem; 2017 Nov; 409(29):6739-6744. PubMed ID: 29030669 [TBL] [Abstract][Full Text] [Related]
13. Advanced micro-extraction techniques (SPME, HiSorb) for the determination of goat cheese whey wastewater VOCs. Elia S; Stylianou M; Agapiou A J Environ Manage; 2024 Feb; 351():119934. PubMed ID: 38176384 [TBL] [Abstract][Full Text] [Related]
14. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Souza Silva ÉA; Saboia G; Jorge NC; Hoffmann C; Dos Santos Isaias RM; Soares GLG; Zini CA Talanta; 2017 Dec; 175():9-20. PubMed ID: 28842040 [TBL] [Abstract][Full Text] [Related]
15. Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Trujillo-Rodríguez MJ; Yu H; Cole WT; Ho TD; Pino V; Anderson JL; Afonso AM Talanta; 2014 Apr; 121():153-62. PubMed ID: 24607122 [TBL] [Abstract][Full Text] [Related]
17. Analysis of extracellular metabolome by HS-SPME/GC-MS: Optimization and application in a pilot study to evaluate galactosamine-induced hepatotoxicity. Araújo AM; Moreira N; Lima AR; Bastos ML; Carvalho F; Carvalho M; Guedes de Pinho P Toxicol Lett; 2018 Oct; 295():22-31. PubMed ID: 29852275 [TBL] [Abstract][Full Text] [Related]
18. Comparison of headspace solid-phase microextraction with conventional extraction for the analysis of the volatile components in Melia azedarach. Yang Y; Xiao Y; Liu B; Fang X; Yang W; Xu J Talanta; 2011 Oct; 86():356-61. PubMed ID: 22063551 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the volatile compounds of Teucrium flavum L. subsp. flavum (Lamiaceae) by headspace solid-phase microextraction coupled to gas chromatography with flame ionisation and mass spectrometric detection. Sagratini G; Maggi F; Bílek T; Papa F; Vittori S Nat Prod Res; 2012; 26(14):1339-47. PubMed ID: 22077422 [TBL] [Abstract][Full Text] [Related]
20. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages. Rodrigues F; Caldeira M; Câmara JS Anal Chim Acta; 2008 Feb; 609(1):82-104. PubMed ID: 18243877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]