BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21494644)

  • 1. Prioritization and evaluation of depression candidate genes by combining multidimensional data resources.
    Kao CF; Fang YS; Zhao Z; Kuo PH
    PLoS One; 2011 Apr; 6(4):e18696. PubMed ID: 21494644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases-schizophrenia as a case.
    Sun J; Jia P; Fanous AH; Webb BT; van den Oord EJ; Chen X; Bukszar J; Kendler KS; Zhao Z
    Bioinformatics; 2009 Oct; 25(19):2595-6602. PubMed ID: 19602527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk and information evaluation of prioritized genes for complex traits: application to bipolar disorder.
    Kao CF; Chuang LC; Kuo PH
    Am J Med Genet B Neuropsychiatr Genet; 2014 Oct; 165B(7):596-606. PubMed ID: 25123107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prioritization and comprehensive analysis of genes related to major depressive disorder.
    Liu Y; Fan P; Zhang S; Wang Y; Liu D
    Mol Genet Genomic Med; 2019 Jun; 7(6):e659. PubMed ID: 30968596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-dimensional prioritization of dental caries candidate genes and its enriched dense network modules.
    Wang Q; Jia P; Cuenco KT; Feingold E; Marazita ML; Wang L; Zhao Z
    PLoS One; 2013; 8(10):e76666. PubMed ID: 24146904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene- and evidence-based candidate gene selection for schizophrenia and gene feature analysis.
    Sun J; Han L; Zhao Z
    Artif Intell Med; 2010; 48(2-3):99-106. PubMed ID: 19944577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enriched pathways for major depressive disorder identified from a genome-wide association study.
    Kao CF; Jia P; Zhao Z; Kuo PH
    Int J Neuropsychopharmacol; 2012 Nov; 15(10):1401-11. PubMed ID: 22243633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources.
    Chang S; Zhang W; Gao L; Wang J
    Protein Cell; 2012 Jul; 3(7):526-34. PubMed ID: 22773342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prioritizing Genes Related to Nicotine Addiction Via a Multi-source-Based Approach.
    Liu X; Liu M; Li X; Zhang L; Fan R; Wang J
    Mol Neurobiol; 2015 Aug; 52(1):442-55. PubMed ID: 25193020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating genome-wide association study and methylation functional annotation data identified candidate genes and pathways for schizophrenia.
    Qi X; Guan F; Wen Y; Li P; Ma M; Cheng S; Zhang L; Liang C; Cheng B; Zhang F
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Jan; 96():109736. PubMed ID: 31425724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci.
    Zhao Y; Chen J; Freudenberg JM; Meng Q; Rajpal DK; Yang X
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):928-41. PubMed ID: 26966275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico gene prioritization by integrating multiple data sources.
    Chen Y; Wang W; Zhou Y; Shields R; Chanda SK; Elston RC; Li J
    PLoS One; 2011; 6(6):e21137. PubMed ID: 21731658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPS: Identification of disease genes by rank aggregation of multi-genomic scoring schemes.
    Meshkin A; Shakery A; Masoudi-Nejad A
    Genomics; 2019 Jul; 111(4):612-618. PubMed ID: 29604342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of automated candidate gene prediction systems using genes implicated in type 2 diabetes by genome-wide association studies.
    Teber ET; Liu JY; Ballouz S; Fatkin D; Wouters MA
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S69. PubMed ID: 19208173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prioritization of candidate genes for periodontitis using multiple computational tools.
    Zhan Y; Zhang R; Lv H; Song X; Xu X; Chai L; Lv W; Shang Z; Jiang Y; Zhang R
    J Periodontol; 2014 Aug; 85(8):1059-69. PubMed ID: 24476546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic prioritization of candidate pathway association with pathway score.
    Lin SJ; Lu TP; Yu QY; Hsiao CK
    BMC Bioinformatics; 2018 Oct; 19(1):391. PubMed ID: 30355338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning-Based Gene Prioritization Identifies Novel Candidate Risk Genes for Inflammatory Bowel Disease.
    Isakov O; Dotan I; Ben-Shachar S
    Inflamm Bowel Dis; 2017 Sep; 23(9):1516-1523. PubMed ID: 28795970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational selection and prioritization of candidate genes for fetal alcohol syndrome.
    Lombard Z; Tiffin N; Hofmann O; Bajic VB; Hide W; Ramsay M
    BMC Genomics; 2007 Oct; 8():389. PubMed ID: 17961254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An unbiased evaluation of gene prioritization tools.
    Börnigen D; Tranchevent LC; Bonachela-Capdevila F; Devriendt K; De Moor B; De Causmaecker P; Moreau Y
    Bioinformatics; 2012 Dec; 28(23):3081-8. PubMed ID: 23047555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density genome-wide association study for residual feed intake in Holstein dairy cattle.
    Li B; Fang L; Null DJ; Hutchison JL; Connor EE; VanRaden PM; VandeHaar MJ; Tempelman RJ; Weigel KA; Cole JB
    J Dairy Sci; 2019 Dec; 102(12):11067-11080. PubMed ID: 31563317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.