These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21494725)

  • 1. Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte.
    Lee K; Kim D; Schmuki P
    Chem Commun (Camb); 2011 May; 47(20):5789-91. PubMed ID: 21494725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures.
    Ghicov A; Schmuki P
    Chem Commun (Camb); 2009 May; (20):2791-808. PubMed ID: 19436878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability.
    Roy P; Dey T; Lee K; Kim D; Fabry B; Schmuki P
    J Am Chem Soc; 2010 Jun; 132(23):7893-5. PubMed ID: 20481564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells.
    Yang M; Kim D; Jha H; Lee K; Paul J; Schmuki P
    Chem Commun (Camb); 2011 Feb; 47(7):2032-4. PubMed ID: 21184009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes.
    So S; Lee K; Schmuki P
    J Am Chem Soc; 2012 Jul; 134(28):11316-8. PubMed ID: 22725719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium fluoride-assisted modulation of anodized TiO₂ nanotube for dye-sensitized solar cells application.
    Yun JH; Ng YH; Ye C; Mozer AJ; Wallace GG; Amal R
    ACS Appl Mater Interfaces; 2011 May; 3(5):1585-93. PubMed ID: 21480631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization.
    Yin H; Liu H; Shen WZ
    Nanotechnology; 2010 Jan; 21(3):035601. PubMed ID: 19966387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties.
    Nah YC; Ghicov A; Kim D; Berger S; Schmuki P
    J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis.
    Lee K; Kim D; Roy P; Paramasivam I; Birajdar BI; Spiecker E; Schmuki P
    J Am Chem Soc; 2010 Feb; 132(5):1478-9. PubMed ID: 20078123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye-sensitized solar cells based on TiO2-B nanobelt/TiO2 nanoparticle sandwich-type photoelectrodes with controllable nanobelt length.
    Dong Y; Pan K; Tian G; Zhou W; Pan Q; Xie T; Wang D; Fu H
    Dalton Trans; 2011 Apr; 40(15):3808-14. PubMed ID: 21369612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes.
    Wei W; Lee K; Shaw S; Schmuki P
    Chem Commun (Camb); 2012 May; 48(35):4244-6. PubMed ID: 22441755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass.
    Stergiopoulos T; Valota A; Likodimos V; Speliotis T; Niarchos D; Skeldon P; Thompson GE; Falaras P
    Nanotechnology; 2009 Sep; 20(36):365601. PubMed ID: 19687543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid anodic formation of high aspect ratio WO3 layers with self-ordered nanochannel geometry and use in photocatalysis.
    Wei W; Shaw S; Lee K; Schmuki P
    Chemistry; 2012 Nov; 18(46):14622-6. PubMed ID: 23042381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells.
    Kim JY; Kang SH; Kim HS; Sung YE
    Langmuir; 2010 Feb; 26(4):2864-70. PubMed ID: 19835409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and applications of electrochemically self-assembled titania nanotube arrays.
    Rani S; Roy SC; Paulose M; Varghese OK; Mor GK; Kim S; Yoriya S; Latempa TJ; Grimes CA
    Phys Chem Chem Phys; 2010 Mar; 12(12):2780-800. PubMed ID: 20449368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.
    Yuan X; Zheng M; Ma L; Shen W
    Nanotechnology; 2010 Oct; 21(40):405302. PubMed ID: 20829566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications.
    Jun Y; Park JH; Kang MG
    Chem Commun (Camb); 2012 Jul; 48(52):6456-71. PubMed ID: 22634750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping.
    Fabregat-Santiago F; Barea EM; Bisquert J; Mor GK; Shankar K; Grimes CA
    J Am Chem Soc; 2008 Aug; 130(34):11312-6. PubMed ID: 18671396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.