BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

942 related articles for article (PubMed ID: 21495062)

  • 41. Instrumental variable approach for estimating a causal hazard ratio: application to the effect of postmastectomy radiotherapy on breast cancer patients.
    Yang F; Cheng J; Huo D
    Obs Stud; 2019; 5():141-162. PubMed ID: 34223564
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of an outcome using trajectories estimated from a linear mixed model.
    Maruyama N; Takahashi F; Takeuchi M
    J Biopharm Stat; 2009 Sep; 19(5):779-90. PubMed ID: 20183443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the conditional logistic estimator in two-arm experimental studies with non-compliance and before-after binary outcomes.
    Bartolucci F
    Stat Med; 2010 Jun; 29(13):1411-29. PubMed ID: 20209479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simulation-based evaluation of methods to estimate the impact of an adverse event on hospital length of stay.
    Samore MH; Shen S; Greene T; Stoddard G; Sauer B; Shinogle J; Nebeker J; Harbarth S
    Med Care; 2007 Oct; 45(10 Supl 2):S108-15. PubMed ID: 17909368
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Some cautions on the use of instrumental variables estimators in outcomes research: how bias in instrumental variables estimators is affected by instrument strength, instrument contamination, and sample size.
    Crown WH; Henk HJ; Vanness DJ
    Value Health; 2011 Dec; 14(8):1078-84. PubMed ID: 22152177
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparisons of methods for analysis of repeated binary responses with missing data.
    Frank Liu G; Zhan X
    J Biopharm Stat; 2011 May; 21(3):371-92. PubMed ID: 21442514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Occupational exposures and lung cancer: adjustment for unmeasured confounding by smoking.
    Richardson DB
    Epidemiology; 2010 Mar; 21(2):181-6. PubMed ID: 20081541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using generalized additive models to reduce residual confounding.
    Benedetti A; Abrahamowicz M
    Stat Med; 2004 Dec; 23(24):3781-801. PubMed ID: 15580601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Doubly robust estimators of causal exposure effects with missing data in the outcome, exposure or a confounder.
    Williamson EJ; Forbes A; Wolfe R
    Stat Med; 2012 Dec; 31(30):4382-400. PubMed ID: 23086504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach.
    Qu Y; Lipkovich I
    Stat Med; 2009 Apr; 28(9):1402-14. PubMed ID: 19222021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Marginal mean weighting through stratification: a generalized method for evaluating multivalued and multiple treatments with nonexperimental data.
    Hong G
    Psychol Methods; 2012 Mar; 17(1):44-60. PubMed ID: 21843003
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Longitudinal and repeated cross-sectional cluster-randomization designs using mixed effects regression for binary outcomes: bias and coverage of frequentist and Bayesian methods.
    Localio AR; Berlin JA; Have TR
    Stat Med; 2006 Aug; 25(16):2720-36. PubMed ID: 16345043
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bounding the bias of unmeasured factors with confounding and effect-modifying potentials.
    Lee WC
    Stat Med; 2011 Apr; 30(9):1007-17. PubMed ID: 21472760
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methodological issues of randomized controlled trials for the evaluation of reproductive health interventions.
    Villar J; Carroli G
    Prev Med; 1996; 25(3):365-75. PubMed ID: 8781015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
    Kasza J; Wolfe R; Schuster T
    Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Confounding in health research.
    Greenland S; Morgenstern H
    Annu Rev Public Health; 2001; 22():189-212. PubMed ID: 11274518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantification of bias in direct effects estimates due to different types of measurement error in the mediator.
    le Cessie S; Debeij J; Rosendaal FR; Cannegieter SC; Vandenbroucke JP
    Epidemiology; 2012 Jul; 23(4):551-60. PubMed ID: 22526092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.