BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21495107)

  • 1. Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from Burkholderia xenovorans LB400.
    Bains J; Leon R; Temke KG; Boulanger MJ
    Protein Sci; 2011 Jun; 20(6):1048-59. PubMed ID: 21495107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and structural characterization of the paralogous benzoate CoA ligases from Burkholderia xenovorans LB400: defining the entry point into the novel benzoate oxidation (box) pathway.
    Bains J; Boulanger MJ
    J Mol Biol; 2007 Nov; 373(4):965-77. PubMed ID: 17884091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and biophysical characterization of BoxC from Burkholderia xenovorans LB400: a novel ring-cleaving enzyme in the crotonase superfamily.
    Bains J; Leon R; Boulanger MJ
    J Biol Chem; 2009 Jun; 284(24):16377-16385. PubMed ID: 19369256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction.
    Muñoz-Clares RA; González-Segura L; Díaz-Sánchez AG
    Chem Biol Interact; 2011 May; 191(1-3):137-46. PubMed ID: 21195066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase.
    Gescher J; Ismail W; Olgeschläger E; Eisenreich W; Wörth J; Fuchs G
    J Bacteriol; 2006 Apr; 188(8):2919-27. PubMed ID: 16585753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A
    J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400.
    Denef VJ; Klappenbach JA; Patrauchan MA; Florizone C; Rodrigues JL; Tsoi TV; Verstraete W; Eltis LD; Tiedje JM
    Appl Environ Microbiol; 2006 Jan; 72(1):585-95. PubMed ID: 16391095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and crystallization of a putative transcriptional regulator of the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Law AM; Bains J; Boulanger MJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Oct; 65(Pt 10):1001-3. PubMed ID: 19851006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400.
    Denef VJ; Patrauchan MA; Florizone C; Park J; Tsoi TV; Verstraete W; Tiedje JM; Eltis LD
    J Bacteriol; 2005 Dec; 187(23):7996-8005. PubMed ID: 16291673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first crystal structure of a thioacylenzyme intermediate in the ALDH family: new coenzyme conformation and relevance to catalysis.
    D'Ambrosio K; Pailot A; Talfournier F; Didierjean C; Benedetti E; Aubry A; Branlant G; Corbier C
    Biochemistry; 2006 Mar; 45(9):2978-86. PubMed ID: 16503652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in nucleotide specificity and catalytic mechanism between Vibrio harveyi aldehyde dehydrogenase and other members of the aldehyde dehydrogenase superfamily.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Chem Biol Interact; 2001 Jan; 130-132(1-3):29-38. PubMed ID: 11306028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A histidine residue in the catalytic mechanism distinguishes Vibrio harveyi aldehyde dehydrogenase from other members of the aldehyde dehydrogenase superfamily.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Biochemistry; 2000 Nov; 39(47):14409-18. PubMed ID: 11087393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function.
    Luo M; Gamage TT; Arentson BW; Schlasner KN; Becker DF; Tanner JJ
    J Biol Chem; 2016 Nov; 291(46):24065-24075. PubMed ID: 27679491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification, crystallization and X-ray diffraction analysis of a novel ring-cleaving enzyme (BoxC(C)) from Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 May; 64(Pt 5):422-4. PubMed ID: 18453716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400.
    Denef VJ; Park J; Tsoi TV; Rouillard JM; Zhang H; Wibbenmeyer JA; Verstraete W; Gulari E; Hashsham SA; Tiedje JM
    Appl Environ Microbiol; 2004 Aug; 70(8):4961-70. PubMed ID: 15294836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI.
    Baker P; Carere J; Seah SY
    Biochemistry; 2012 Jun; 51(22):4558-67. PubMed ID: 22574886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorobenzoate inhibits growth and induces stress proteins in the PCB-degrading bacterium Burkholderia xenovorans LB400.
    Martínez P; Agulló L; Hernández M; Seeger M
    Arch Microbiol; 2007 Sep; 188(3):289-97. PubMed ID: 17522847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400.
    Méndez V; Agulló L; González M; Seeger M
    PLoS One; 2011 Mar; 6(3):e17583. PubMed ID: 21423751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.