These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 21495115)
41. Unveiling gene expression regulation of the Bacillus thuringiensis Cry3Aa toxin receptor ADAM10 by the potato dietary miR171c in Colorado potato beetle. Robles-Fort A; Pescador-Dionisio S; García-Robles I; Sentandreu V; Martínez-Ramírez AC; Real MD; Rausell C Pest Manag Sci; 2022 Sep; 78(9):3760-3768. PubMed ID: 34846789 [TBL] [Abstract][Full Text] [Related]
42. Effects of Bacillus thuringiensis Cry1Ab and Cry3Aa endotoxins on predatory Coleoptera tested through artificial diet-incorporation bioassays. Porcar M; García-Robles I; Domínguez-Escribà L; Latorre A Bull Entomol Res; 2010 Jun; 100(3):297-302. PubMed ID: 19781113 [TBL] [Abstract][Full Text] [Related]
43. Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac. Chen Z; He F; Xiao Y; Liu C; Li J; Yang Y; Ai H; Peng J; Hong H; Liu K Insect Biochem Mol Biol; 2015 Apr; 59():1-17. PubMed ID: 25662100 [TBL] [Abstract][Full Text] [Related]
44. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella. Park Y; Herrero S; Kim Y Insect Mol Biol; 2015 Dec; 24(6):624-33. PubMed ID: 26331576 [TBL] [Abstract][Full Text] [Related]
45. Characterization of a novel cry8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. Shu C; Yan G; Wang R; Zhang J; Feng S; Huang D; Song F Appl Microbiol Biotechnol; 2009 Sep; 84(4):701-7. PubMed ID: 19399496 [TBL] [Abstract][Full Text] [Related]
46. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Wang G; Zhang J; Song F; Wu J; Feng S; Huang D Appl Microbiol Biotechnol; 2006 Oct; 72(5):924-30. PubMed ID: 16572346 [TBL] [Abstract][Full Text] [Related]
47. Identification of two Wang S; Guo Y; Sun Y; Weng M; Liao Q; Qiu R; Zou S; Wu S Bull Entomol Res; 2023 Oct; 113(5):615-625. PubMed ID: 37466033 [No Abstract] [Full Text] [Related]
48. Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis. García-Robles I; De Loma J; Capilla M; Roger I; Boix-Montesinos P; Carrión P; Vicente M; López-Galiano MJ; Real MD; Rausell C Dev Comp Immunol; 2020 Mar; 104():103525. PubMed ID: 31655128 [TBL] [Abstract][Full Text] [Related]
49. Beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces larval growth and curbs reproduction in Spodoptera littoralis (Boisd.). Hussein HM; Habustová O; Sehnal F Pest Manag Sci; 2005 Dec; 61(12):1186-92. PubMed ID: 16152673 [TBL] [Abstract][Full Text] [Related]
50. Construction of a Bacillus thuringiensis engineered strain with high toxicity and broad pesticidal spectrum against coleopteran insects. Liu J; Yan G; Shu C; Zhao C; Liu C; Song F; Zhou L; Ma J; Zhang J; Huang D Appl Microbiol Biotechnol; 2010 Jun; 87(1):243-9. PubMed ID: 20165944 [TBL] [Abstract][Full Text] [Related]
51. Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Peng D; Xu X; Ye W; Yu Z; Sun M Appl Microbiol Biotechnol; 2010 Jan; 85(4):1033-40. PubMed ID: 19652967 [TBL] [Abstract][Full Text] [Related]
53. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field. Gassmann AJ J Invertebr Pathol; 2012 Jul; 110(3):287-93. PubMed ID: 22537837 [TBL] [Abstract][Full Text] [Related]
54. Growth variation among Bacillus thuringiensis strains can affect screening procedures for supernatant-secreted toxins against insect pests. Argôlo Filho RC; Gomes RA; Barreto MR; de P Lana U; Valicente FH; Loguercio LL Pest Manag Sci; 2011 Sep; 67(9):1184-92. PubMed ID: 21618404 [TBL] [Abstract][Full Text] [Related]
55. A Novel Formulation of Bacillus thuringiensis for the Control of Brassica Leaf Beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). Kim E; Jeoung S; Park Y; Kim K; Kim Y J Econ Entomol; 2015 Dec; 108(6):2556-65. PubMed ID: 26470390 [TBL] [Abstract][Full Text] [Related]
56. Functional characterization of Aedes aegypti alkaline phosphatase ALP1 involved in the toxicity of Cry toxins from Bacillus thuringiensis subsp. israelensis and jegathesan. Chen J; Aimanova K; Gill SS Peptides; 2017 Dec; 98():78-85. PubMed ID: 28587836 [TBL] [Abstract][Full Text] [Related]
57. Screening and characterization of Bacillus thuringiensis isolates from Brazil for the presence of coleoptera-specific cry genes. Marquez AM; Dias JM; Ribeiro BM Microbiol Res; 2000 Mar; 154(4):355-62. PubMed ID: 10772158 [TBL] [Abstract][Full Text] [Related]
58. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity. Contreras E; Benito-Jardón M; López-Galiano MJ; Real MD; Rausell C Dev Comp Immunol; 2015 Jun; 50(2):139-45. PubMed ID: 25684675 [TBL] [Abstract][Full Text] [Related]
59. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae). Shishir MA; Akter A; Bodiuzzaman M; Hossain MA; Alam MM; Khan SA; Khan SN; Hoq MM Biocontrol Sci; 2015; 20(2):115-23. PubMed ID: 26133509 [TBL] [Abstract][Full Text] [Related]
60. Manduca sexta (Lepidoptera: Sphingidae) cadherin fragments function as synergists for Cry1A and Cry1C Bacillus thuringiensis toxins against noctuid moths Helicoverpa zea, Agrotis ipsilon and Spodoptera exigua. Abdullah MA; Moussa S; Taylor MD; Adang MJ Pest Manag Sci; 2009 Oct; 65(10):1097-103. PubMed ID: 19489014 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]