These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 21495154)
1. Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Hassan MN; Afghan S; Hafeez FY Pest Manag Sci; 2011 Sep; 67(9):1147-54. PubMed ID: 21495154 [TBL] [Abstract][Full Text] [Related]
2. Potential of plant extracts in combination with bacterial antagonist treatment as biocontrol agent of red rot of sugarcane. Jayakumar V; Bhaskaran R; Tsushima S Can J Microbiol; 2007 Feb; 53(2):196-206. PubMed ID: 17496967 [TBL] [Abstract][Full Text] [Related]
3. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Ramette A; Frapolli M; Fischer-Le Saux M; Gruffaz C; Meyer JM; Défago G; Sutra L; Moënne-Loccoz Y Syst Appl Microbiol; 2011 May; 34(3):180-8. PubMed ID: 21392918 [TBL] [Abstract][Full Text] [Related]
4. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Perneel M; Heyrman J; Adiobo A; De Maeyer K; Raaijmakers JM; De Vos P; Höfte M J Appl Microbiol; 2007 Oct; 103(4):1007-20. PubMed ID: 17897205 [TBL] [Abstract][Full Text] [Related]
5. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. Tran H; Kruijt M; Raaijmakers JM J Appl Microbiol; 2008 Mar; 104(3):839-51. PubMed ID: 17976176 [TBL] [Abstract][Full Text] [Related]
6. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. Kruijt M; Tran H; Raaijmakers JM J Appl Microbiol; 2009 Aug; 107(2):546-56. PubMed ID: 19302489 [TBL] [Abstract][Full Text] [Related]
7. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279 [TBL] [Abstract][Full Text] [Related]
9. [Autoinduction of pyoluteorin and correlation between phenazine-1-carboxylic acid and pyoluteorin in Pseudomonas sp. M18]. Ge YH; Zhao YH; Chen LJ; Miao J; Wen L Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):441-6. PubMed ID: 17672302 [TBL] [Abstract][Full Text] [Related]
10. No antibiotic and toxic metabolites produced by the biocontrol agent Pseudomonas putida strain B2017. Daura-Pich O; Hernández I; Pinyol-Escala L; Lara JM; Martínez-Servat S; Fernández C; López-García B FEMS Microbiol Lett; 2020 May; 367(9):. PubMed ID: 32347922 [TBL] [Abstract][Full Text] [Related]
11. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Cazorla FM; Duckett SB; Bergström ET; Noreen S; Odijk R; Lugtenberg BJ; Thomas-Oates JE; Bloemberg GV Mol Plant Microbe Interact; 2006 Apr; 19(4):418-28. PubMed ID: 16610745 [TBL] [Abstract][Full Text] [Related]
12. Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads. Afsharmanesh H; Ahmadzadeh M; Sharifi-Tehrani A Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1021-9. PubMed ID: 17390854 [TBL] [Abstract][Full Text] [Related]
13. Isolation, characterization, and effect of fluorescent pseudomonads on micropropagated sugarcane. Mehnaz S; Weselowski B; Aftab F; Zahid S; Lazarovits G; Iqbal J Can J Microbiol; 2009 Aug; 55(8):1007-11. PubMed ID: 19898541 [TBL] [Abstract][Full Text] [Related]
14. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Kidarsa TA; Goebel NC; Zabriskie TM; Loper JE Mol Microbiol; 2011 Jul; 81(2):395-414. PubMed ID: 21564338 [TBL] [Abstract][Full Text] [Related]
15. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Péchy-Tarr M; Bottiglieri M; Mathys S; Lejbølle KB; Schnider-Keel U; Maurhofer M; Keel C Mol Plant Microbe Interact; 2005 Mar; 18(3):260-72. PubMed ID: 15782640 [TBL] [Abstract][Full Text] [Related]
16. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Bakker PA; Glandorf DC; Viebahn M; Ouwens TW; Smit E; Leeflang P; Wernars K; Thomashow LS; Thomas-Oates JE; van Loon LC Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):617-24. PubMed ID: 12448757 [TBL] [Abstract][Full Text] [Related]
17. Contribution of phlA and some metabolites of fluorescent pseudomonads to antifungal activity. Afsharmanesh H; Ahmadzadeh M; Sharifi-Tehrani A; Javan-Nikkhah M; Ghazanfari K Commun Agric Appl Biol Sci; 2005; 70(3):151-5. PubMed ID: 16637170 [TBL] [Abstract][Full Text] [Related]
18. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Brodhagen M; Henkels MD; Loper JE Appl Environ Microbiol; 2004 Mar; 70(3):1758-66. PubMed ID: 15006802 [TBL] [Abstract][Full Text] [Related]
19. Biodiversity of rice (Oryza sativa L.) and sugarcane (Saccharum officinarum L.) rhizosphere pseudomonads. Rameshkumar N; Arasu VT; Gunasekaran P Indian J Exp Biol; 2005 Jan; 43(1):84-9. PubMed ID: 15691070 [TBL] [Abstract][Full Text] [Related]