These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 21495168)

  • 21. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation.
    Lin FH; Chen TM; Lin CP; Lee CJ
    Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological performance of a new beta-TCP/PLLA composite material for applications in spine surgery: in vitro and in vivo studies.
    Aunoble S; Clément D; Frayssinet P; Harmand MF; Le Huec JC
    J Biomed Mater Res A; 2006 Aug; 78(2):416-22. PubMed ID: 16721799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell culture test of TCP/CPLA composite.
    Kikuchi M; Tanaka J; Koyama Y; Takakuda K
    J Biomed Mater Res; 1999; 48(2):108-10. PubMed ID: 10331901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
    Zhou Z; Buchanan F; Mitchell C; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds.
    Gayer C; Ritter J; Bullemer M; Grom S; Jauer L; Meiners W; Pfister A; Reinauer F; Vučak M; Wissenbach K; Fischer H; Poprawe R; Schleifenbaum JH
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():660-673. PubMed ID: 31029360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering.
    Liu D; Zhuang J; Shuai C; Peng S
    Biofabrication; 2013 Jun; 5(2):025005. PubMed ID: 23458914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.
    Gross KA; Rodríguez-Lorenzo LM
    Biomaterials; 2004 Sep; 25(20):4955-62. PubMed ID: 15109856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties.
    Zheng X; Zhou S; Yu X; Li X; Feng B; Qu S; Weng J
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):170-80. PubMed ID: 18161831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of calcium carbonate-containing composite scaffolds.
    Olah L; Borbas L
    Acta Bioeng Biomech; 2008; 10(1):61-6. PubMed ID: 18634355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting.
    Habijan T; Haberland C; Meier H; Frenzel J; Wittsiepe J; Wuwer C; Greulich C; Schildhauer TA; Köller M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):419-26. PubMed ID: 25428090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of manufacturing method of the MAP21 magnesium alloy prepared by selective laser melting (SLM).
    Gruber K; Mackiewicz A; Stopyra W; Dziedzic R; Kurzynowski T
    Acta Bioeng Biomech; 2019; 21(4):157-168. PubMed ID: 32022797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification.
    Wu C; Ramaswamy Y; Boughton P; Zreiqat H
    Acta Biomater; 2008 Mar; 4(2):343-53. PubMed ID: 17921076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A self-reinforcing biodegradable implant made of poly(ɛ-caprolactone)/calcium phosphate ceramic composite for craniomaxillofacial fracture fixation.
    Wu CC; Tsai YF; Hsu LH; Chen JP; Sumi S; Yang KC
    J Craniomaxillofac Surg; 2016 Sep; 44(9):1333-41. PubMed ID: 27527677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.
    Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E
    Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures].
    Li X; Zou J; Zhu G; Qi X; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uniform tricalcium phosphate beads with an open porous structure for tissue engineering.
    Ryu TK; Oh MJ; Moon SK; Paik DH; Kim SE; Park JH; Choi SW
    Colloids Surf B Biointerfaces; 2013 Dec; 112():368-73. PubMed ID: 24021546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.
    Lipinski P; Barbas A; Bonnet AS
    J Mech Behav Biomed Mater; 2013 Dec; 28():274-90. PubMed ID: 24008139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.