These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21495624)

  • 1. Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions.
    Sturms R; DiSpirito AA; Hargrove MS
    Biochemistry; 2011 May; 50(19):3873-8. PubMed ID: 21495624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxylamine reduction to ammonium by plant and cyanobacterial hemoglobins.
    Sturms R; DiSpirito AA; Fulton DB; Hargrove MS
    Biochemistry; 2011 Dec; 50(50):10829-35. PubMed ID: 22080728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions.
    Petersen MG; Dewilde S; Fago A
    J Inorg Biochem; 2008 Sep; 102(9):1777-82. PubMed ID: 18599123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study.
    Salhany JM
    Blood Cells Mol Dis; 2013 Jan; 50(1):8-19. PubMed ID: 22981699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics.
    Weiland TR; Kundu S; Trent JT; Hoy JA; Hargrove MS
    J Am Chem Soc; 2004 Sep; 126(38):11930-5. PubMed ID: 15382928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the protein matrix on intramolecular histidine ligation in ferric and ferrous hexacoordinate hemoglobins.
    Halder P; Trent JT; Hargrove MS
    Proteins; 2007 Jan; 66(1):172-82. PubMed ID: 17044063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylene glycol conjugation enhances the nitrite reductase activity of native and cross-linked hemoglobin.
    Lui FE; Dong P; Kluger R
    Biochemistry; 2008 Oct; 47(40):10773-80. PubMed ID: 18795797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrite reductase activity of nonsymbiotic hemoglobins from Arabidopsis thaliana.
    Tiso M; Tejero J; Kenney C; Frizzell S; Gladwin MT
    Biochemistry; 2012 Jul; 51(26):5285-92. PubMed ID: 22620259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow ligand binding kinetics dominate ferrous hexacoordinate hemoglobin reactivities and reveal differences between plants and other species.
    Smagghe BJ; Sarath G; Ross E; Hilbert JL; Hargrove MS
    Biochemistry; 2006 Jan; 45(2):561-70. PubMed ID: 16401085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin.
    Goldstein S; Merenyi G; Samuni A
    J Am Chem Soc; 2004 Dec; 126(48):15694-701. PubMed ID: 15571391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The new chemical biology of nitrite reactions with hemoglobin: R-state catalysis, oxidative denitrosylation, and nitrite reductase/anhydrase.
    Gladwin MT; Grubina R; Doyle MP
    Acc Chem Res; 2009 Jan; 42(1):157-67. PubMed ID: 18783254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of class-1 non-symbiotic hemoglobin genes by nitrate, nitrite and nitric oxide in cultured rice cells.
    Ohwaki Y; Kawagishi-Kobayashi M; Wakasa K; Fujihara S; Yoneyama T
    Plant Cell Physiol; 2005 Feb; 46(2):324-31. PubMed ID: 15695464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide formation from the reaction of nitrite with carp and rabbit hemoglobin at intermediate oxygen saturations.
    Jensen FB
    FEBS J; 2008 Jul; 275(13):3375-87. PubMed ID: 18494799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional properties of class 1 plant hemoglobins.
    Igamberdiev AU; Bykova NV; Hill RD
    IUBMB Life; 2011 Mar; 63(3):146-52. PubMed ID: 21445844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of phenylalanine B10 in plant nonsymbiotic hemoglobins.
    Smagghe BJ; Kundu S; Hoy JA; Halder P; Weiland TR; Savage A; Venugopal A; Goodman M; Premer S; Hargrove MS
    Biochemistry; 2006 Aug; 45(32):9735-45. PubMed ID: 16893175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive nitrosylation of ferric cyanide horse heart myoglobin is limited by cyanide dissociation.
    Ascenzi P; di Masi A; Gullotta F; Mattu M; Ciaccio C; Coletta M
    Biochem Biophys Res Commun; 2010 Mar; 393(2):196-200. PubMed ID: 20116365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron self-exchange in hemoglobins revealed by deutero-hemin substitution.
    Athwal NS; Alagurajan J; Sturms R; Fulton DB; Andreotti AH; Hargrove MS
    J Inorg Biochem; 2015 Sep; 150():139-47. PubMed ID: 26141377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of NO-induced oxidation of myoglobin and hemoglobin.
    Eich RF; Li T; Lemon DD; Doherty DH; Curry SR; Aitken JF; Mathews AJ; Johnson KA; Smith RD; Phillips GN; Olson JS
    Biochemistry; 1996 Jun; 35(22):6976-83. PubMed ID: 8679521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-nitrosohemoglobin: a biochemical perspective.
    Zhang Y; Hogg N
    Free Radic Biol Med; 2004 Apr; 36(8):947-58. PubMed ID: 15059635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrite binding to metmyoglobin and methemoglobin in comparison to nitric oxide binding.
    Wanat A; Gdula-ArgasiƄska J; Rutkowska-Zbik D; Witko M; Stochel G; van Eldik R
    J Biol Inorg Chem; 2002 Jan; 7(1-2):165-76. PubMed ID: 11862553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.