These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21495711)

  • 1. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces.
    Liu HH; Zhang HY; Li W
    Langmuir; 2011 May; 27(10):6260-7. PubMed ID: 21495711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtextured superhydrophobic surfaces: a thermodynamic analysis.
    Li W; Amirfazli A
    Adv Colloid Interface Sci; 2007 Apr; 132(2):51-68. PubMed ID: 17331459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal geometrical design for superhydrophobic surfaces: effects of a trapezoid microtexture.
    Li W; Cui XS; Fang GP
    Langmuir; 2010 Mar; 26(5):3194-202. PubMed ID: 20112932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the possibility of superhydrophobic behavior for hydrophilic materials.
    Cui XS; Li W
    J Colloid Interface Sci; 2010 Jul; 347(1):156-62. PubMed ID: 20417521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces.
    Li W; Amirfazli A
    J Colloid Interface Sci; 2005 Dec; 292(1):195-201. PubMed ID: 15979631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure.
    Li W; Fang G; Li Y; Qiao G
    J Phys Chem B; 2008 Jun; 112(24):7234-43. PubMed ID: 18491941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D thermodynamic analysis of superhydrophobic surfaces.
    Yamamoto K; Ogata S
    J Colloid Interface Sci; 2008 Oct; 326(2):471-7. PubMed ID: 18684470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning.
    Bhushan B; Koch K; Jung YC
    Ultramicroscopy; 2009 Jul; 109(8):1029-34. PubMed ID: 19345499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces.
    Sajadinia SH; Sharif F
    J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy.
    Ensikat HJ; Schulte AJ; Koch K; Barthlott W
    Langmuir; 2009 Nov; 25(22):13077-83. PubMed ID: 19899819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures.
    Kuan WF; Chen LJ
    Nanotechnology; 2009 Jan; 20(3):035605. PubMed ID: 19417300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles.
    Barbieri L; Wagner E; Hoffmann P
    Langmuir; 2007 Feb; 23(4):1723-34. PubMed ID: 17279650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces.
    Nosonovsky M; Bhushan B
    Ultramicroscopy; 2007 Oct; 107(10-11):969-79. PubMed ID: 17570591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.
    Im M; Im H; Lee JH; Yoon JB; Choi YK
    Langmuir; 2010 Nov; 26(22):17389-97. PubMed ID: 20879754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls.
    Lee C; Kim CJ
    Langmuir; 2009 Nov; 25(21):12812-8. PubMed ID: 19610627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.
    Jung YC; Bhushan B
    ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.