These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
847 related articles for article (PubMed ID: 21495738)
1. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738 [TBL] [Abstract][Full Text] [Related]
2. Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. Kastenholz MA; Hünenberger PH J Chem Phys; 2006 Jun; 124(22):224501. PubMed ID: 16784292 [TBL] [Abstract][Full Text] [Related]
3. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739 [TBL] [Abstract][Full Text] [Related]
4. Calculation of Derivative Thermodynamic Hydration and Aqueous Partial Molar Properties of Ions Based on Atomistic Simulations. Dahlgren B; Reif MM; Hünenberger PH; Hansen N J Chem Theory Comput; 2012 Oct; 8(10):3542-64. PubMed ID: 26593002 [TBL] [Abstract][Full Text] [Related]
5. Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids. Kastenholz MA; Hünenberger PH J Chem Phys; 2006 Mar; 124(12):124106. PubMed ID: 16599661 [TBL] [Abstract][Full Text] [Related]
6. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. Warren GL; Patel S J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614 [TBL] [Abstract][Full Text] [Related]
7. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250 [TBL] [Abstract][Full Text] [Related]
8. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins. Lu X; Cui Q J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181 [TBL] [Abstract][Full Text] [Related]
9. Development of a lattice-sum method emulating nonperiodic boundary conditions for the treatment of electrostatic interactions in molecular simulations: a continuum-electrostatics study. Kastenholz MA; Hünenberger PH J Chem Phys; 2006 Mar; 124(12):124108. PubMed ID: 16599663 [TBL] [Abstract][Full Text] [Related]
10. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field. Yang ZZ; Li X J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014 [TBL] [Abstract][Full Text] [Related]
11. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
12. Coarse-grained ions without charges: reproducing the solvation structure of NaCl in water using short-ranged potentials. DeMille RC; Molinero V J Chem Phys; 2009 Jul; 131(3):034107. PubMed ID: 19624181 [TBL] [Abstract][Full Text] [Related]
13. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy. Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735 [TBL] [Abstract][Full Text] [Related]
14. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. Lamoureux G; Roux B J Phys Chem B; 2006 Feb; 110(7):3308-22. PubMed ID: 16494345 [TBL] [Abstract][Full Text] [Related]
15. Rational design of ion force fields based on thermodynamic solvation properties. Horinek D; Mamatkulov SI; Netz RR J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851 [TBL] [Abstract][Full Text] [Related]
16. Restoring charge asymmetry in continuum electrostatics calculations of hydration free energies. Purisima EO; Sulea T J Phys Chem B; 2009 Jun; 113(24):8206-9. PubMed ID: 19459599 [TBL] [Abstract][Full Text] [Related]
17. Solvation thermodynamics and heat capacity of polar and charged solutes in water. Sedlmeier F; Netz RR J Chem Phys; 2013 Mar; 138(11):115101. PubMed ID: 23534665 [TBL] [Abstract][Full Text] [Related]
18. Ionic force field optimization based on single-ion and ion-pair solvation properties. Fyta M; Kalcher I; Dzubiella J; Vrbka L; Netz RR J Chem Phys; 2010 Jan; 132(2):024911. PubMed ID: 20095713 [TBL] [Abstract][Full Text] [Related]
19. Molecular density functional theory of solvation: from polar solvents to water. Zhao S; Ramirez R; Vuilleumier R; Borgis D J Chem Phys; 2011 May; 134(19):194102. PubMed ID: 21599039 [TBL] [Abstract][Full Text] [Related]
20. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL; Dumont E; Chodera JD; Dill KA J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]