These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1046 related articles for article (PubMed ID: 21495739)
1. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739 [TBL] [Abstract][Full Text] [Related]
2. Calculation of Derivative Thermodynamic Hydration and Aqueous Partial Molar Properties of Ions Based on Atomistic Simulations. Dahlgren B; Reif MM; Hünenberger PH; Hansen N J Chem Theory Comput; 2012 Oct; 8(10):3542-64. PubMed ID: 26593002 [TBL] [Abstract][Full Text] [Related]
3. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738 [TBL] [Abstract][Full Text] [Related]
4. Rational design of ion force fields based on thermodynamic solvation properties. Horinek D; Mamatkulov SI; Netz RR J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851 [TBL] [Abstract][Full Text] [Related]
5. Unraveling halide hydration: A high dilution approach. Migliorati V; Sessa F; Aquilanti G; D'Angelo P J Chem Phys; 2014 Jul; 141(4):044509. PubMed ID: 25084928 [TBL] [Abstract][Full Text] [Related]
6. Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. Kastenholz MA; Hünenberger PH J Chem Phys; 2006 Jun; 124(22):224501. PubMed ID: 16784292 [TBL] [Abstract][Full Text] [Related]
7. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution. Reiser S; Deublein S; Vrabec J; Hasse H J Chem Phys; 2014 Jan; 140(4):044504. PubMed ID: 25669552 [TBL] [Abstract][Full Text] [Related]
8. Clusters of classical water models. Kiss PT; Baranyai A J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683 [TBL] [Abstract][Full Text] [Related]
9. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764 [TBL] [Abstract][Full Text] [Related]
10. Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids. Kastenholz MA; Hünenberger PH J Chem Phys; 2006 Mar; 124(12):124106. PubMed ID: 16599661 [TBL] [Abstract][Full Text] [Related]
11. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration. Hofer TS; Hünenberger PH J Chem Phys; 2018 Jun; 148(22):222814. PubMed ID: 29907057 [TBL] [Abstract][Full Text] [Related]
12. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. Lamoureux G; Roux B J Phys Chem B; 2006 Feb; 110(7):3308-22. PubMed ID: 16494345 [TBL] [Abstract][Full Text] [Related]
14. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. Joung IS; Cheatham TE J Phys Chem B; 2008 Jul; 112(30):9020-41. PubMed ID: 18593145 [TBL] [Abstract][Full Text] [Related]
15. Ionic force field optimization based on single-ion and ion-pair solvation properties. Fyta M; Kalcher I; Dzubiella J; Vrbka L; Netz RR J Chem Phys; 2010 Jan; 132(2):024911. PubMed ID: 20095713 [TBL] [Abstract][Full Text] [Related]
16. Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules. Fyta M; Netz RR J Chem Phys; 2012 Mar; 136(12):124103. PubMed ID: 22462831 [TBL] [Abstract][Full Text] [Related]
17. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations. Mester Z; Panagiotopoulos AZ J Chem Phys; 2015 Jul; 143(4):044505. PubMed ID: 26233143 [TBL] [Abstract][Full Text] [Related]
18. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
19. Evidence in support of levitation effect as the reason for size dependence of ionic conductivity in water: a molecular dynamics simulation. Ghorai PK; Yashonath S J Phys Chem B; 2006 Jun; 110(24):12179-90. PubMed ID: 16800534 [TBL] [Abstract][Full Text] [Related]
20. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. Warren GL; Patel S J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]