These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21495770)

  • 1. A distribution-based method to resolve single-molecule Förster resonance energy transfer observations.
    Backović M; Price ES; Johnson CK; Ralston JP
    J Chem Phys; 2011 Apr; 134(14):145101. PubMed ID: 21495770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Single-Molecule Three-Color Förster Resonance Energy Transfer by Photon Distribution Analysis.
    Barth A; Voith von Voithenberg L; Lamb DC
    J Phys Chem B; 2019 Aug; 123(32):6901-6916. PubMed ID: 31117611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Transfer Efficiencies, Distance Distributions, and Ensembles of Unfolded and Intrinsically Disordered Proteins From Single-Molecule FRET.
    Holmstrom ED; Holla A; Zheng W; Nettels D; Best RB; Schuler B
    Methods Enzymol; 2018; 611():287-325. PubMed ID: 30471690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous surplus energy transfer observed with multiple FRET acceptors.
    Koushik SV; Blank PS; Vogel SS
    PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the limits of single-molecule FRET resolution in TIRF microscopy.
    Holden SJ; Uphoff S; Hohlbein J; Yadin D; Le Reste L; Britton OJ; Kapanidis AN
    Biophys J; 2010 Nov; 99(9):3102-11. PubMed ID: 21044609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum likelihood estimation of FRET efficiency and its implications for distortions in pixelwise calculation of FRET in microscopy.
    Nagy P; Szabó A; Váradi T; Kovács T; Batta G; Szöllősi J
    Cytometry A; 2014 Nov; 85(11):942-52. PubMed ID: 25123296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing Förster resonance energy transfer with fluctuation algorithms.
    Felekyan S; Sanabria H; Kalinin S; Kühnemuth R; Seidel CA
    Methods Enzymol; 2013; 519():39-85. PubMed ID: 23280107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Molecule FRET States, Conformational Interchange, and Conformational Selection by Dye Labels in Calmodulin.
    DeVore MS; Braimah A; Benson DR; Johnson CK
    J Phys Chem B; 2016 May; 120(19):4357-64. PubMed ID: 27111039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET.
    Gopich IV; Szabo A
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7747-52. PubMed ID: 22550169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining protein complex structures based on a Bayesian model of in vivo Förster resonance energy transfer (FRET) data.
    Bonomi M; Pellarin R; Kim SJ; Russel D; Sundin BA; Riffle M; Jaschob D; Ramsden R; Davis TN; Muller EG; Sali A
    Mol Cell Proteomics; 2014 Nov; 13(11):2812-23. PubMed ID: 25139910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately.
    Peulen TO; Opanasyuk O; Seidel CAM
    J Phys Chem B; 2017 Sep; 121(35):8211-8241. PubMed ID: 28709377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of single-molecule FRET trajectories using hidden Markov modeling.
    McKinney SA; Joo C; Ha T
    Biophys J; 2006 Sep; 91(5):1941-51. PubMed ID: 16766620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer.
    Hadzic MCAS; Sigel RKO; Börner R
    Methods Mol Biol; 2022; 2439():173-190. PubMed ID: 35226322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative time domain analysis of lifetime-based Förster resonant energy transfer measurements with fluorescent proteins: Static random isotropic fluorophore orientation distributions.
    Alexandrov Y; Nikolic DS; Dunsby C; French PMW
    J Biophotonics; 2018 Jul; 11(7):e201700366. PubMed ID: 29582566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Denoising single-molecule FRET trajectories with wavelets and Bayesian inference.
    Taylor JN; Makarov DE; Landes CF
    Biophys J; 2010 Jan; 98(1):164-73. PubMed ID: 20074517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of FRET signals in the presence of free donors and acceptors.
    Wlodarczyk J; Woehler A; Kobe F; Ponimaskin E; Zeug A; Neher E
    Biophys J; 2008 Feb; 94(3):986-1000. PubMed ID: 17921223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative single molecule FRET efficiencies using TIRF microscopy.
    Hildebrandt LL; Preus S; Birkedal V
    Faraday Discuss; 2015; 184():131-42. PubMed ID: 26416760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between whole distribution- and average-based approaches to the determination of fluorescence resonance energy transfer efficiency in ensembles of proteins in living cells.
    Singh DR; Raicu V
    Biophys J; 2010 May; 98(10):2127-35. PubMed ID: 20483320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.