BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21496479)

  • 1. Persistent effects of early augmented acoustic environment on the auditory brainstem.
    Oliver DL; Izquierdo MA; Malmierca MS
    Neuroscience; 2011 Jun; 184():75-87. PubMed ID: 21496479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal exposure to an acoustically enriched environment alters the morphology of neurons in the adult rat auditory system.
    Svobodová Burianová J; Syka J
    Brain Struct Funct; 2020 Sep; 225(7):1979-1995. PubMed ID: 32588120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic experience alters the aged auditory system.
    Turner JG; Parrish JL; Zuiderveld L; Darr S; Hughes LF; Caspary DM; Idrezbegovic E; Canlon B
    Ear Hear; 2013; 34(2):151-9. PubMed ID: 23086424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.
    Slugocki C; Bosnyak D; Trainor LJ
    Hear Res; 2017 Mar; 345():30-42. PubMed ID: 28043881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acoustic evoked brainstem potential of the cat. An experimental study.
    Csécsei GI; Klug N
    Acta Biol Hung; 1996; 47(1-4):21-40. PubMed ID: 9123993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds.
    Dewey RS; Francis ST; Guest H; Prendergast G; Millman RE; Plack CJ; Hall DA
    Neuroimage; 2020 Jan; 204():116239. PubMed ID: 31586673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged sound exposure has different effects on increasing neuronal size in the auditory cortex and brainstem.
    Lu HP; Syka J; Chiu TW; Poon PW
    Hear Res; 2014 Aug; 314():42-50. PubMed ID: 24911238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice.
    Yan J; Zhang Y; Ehret G
    J Neurophysiol; 2005 Jan; 93(1):71-83. PubMed ID: 15331615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual input shapes the auditory frequency responses in the inferior colliculus of mouse.
    Cheng L; Fei XY; Qu YL
    Hear Res; 2019 Sep; 381():107777. PubMed ID: 31430633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Complex Acoustic Environment during Early Development on the Responses of Auditory Cortex Neurons in Rats.
    Pysanenko K; Bureš Z; Lindovský J; Syka J
    Neuroscience; 2018 Feb; 371():221-228. PubMed ID: 29229554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice.
    Turner JG; Willott JF
    Hear Res; 1998 Apr; 118(1-2):101-13. PubMed ID: 9606065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of bat's central auditory system evoked by focal electric stimulation of auditory and/or somatosensory cortices.
    Ma X; Suga N
    J Neurophysiol; 2001 Mar; 85(3):1078-87. PubMed ID: 11247978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brief and short-term corticofugal modulation of acoustic signal processing in the bat midbrain.
    Jen PH; Zhou X; Zhang J; Chen QC; Sun X
    Hear Res; 2002 Jun; 168(1-2):196-207. PubMed ID: 12117521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.
    Lerud KD; Almonte FV; Kim JC; Large EW
    Hear Res; 2014 Feb; 308():41-9. PubMed ID: 24091182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-frequency distribution of neuronal activity in the gerbil inferior colliculus responding to auditory stimuli.
    Maki K; Riquimaroux H
    Neurosci Lett; 2002 Oct; 331(1):1-4. PubMed ID: 12359309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of auditory brainstem responses in cats: whole brainstem mapping, and a lesion and HRP study of the inferior colliculus.
    Kaga K; Shinoda Y; Suzuki JI
    Acta Otolaryngol; 1997 Mar; 117(2):197-201. PubMed ID: 9105447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in neuronal activity of the inferior colliculus in rat after temporal inactivation of the auditory cortex.
    Popelár J; Nwabueze-Ogbo FC; Syka J
    Physiol Res; 2003; 52(5):615-28. PubMed ID: 14535838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticofugal reorganization of the midbrain tonotopic map in mice.
    Yan J; Ehret G
    Neuroreport; 2001 Oct; 12(15):3313-6. PubMed ID: 11711877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastic Change in the Auditory Minimum Threshold Induced by Intercollicular Effects in Mice.
    Mei HX; Tang J; Fu ZY; Cheng L; Chen QC
    Neural Plast; 2016; 2016():4195391. PubMed ID: 27057363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inputs to combination-sensitive neurons of the inferior colliculus.
    Wenstrup JJ; Mittmann DH; Grose CD
    J Comp Neurol; 1999 Jul; 409(4):509-28. PubMed ID: 10376737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.