BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 21497082)

  • 1. Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1.
    Vlasova-St Louis I; Bohjanen PR
    Curr Opin Genet Dev; 2011 Aug; 21(4):444-51. PubMed ID: 21497082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.
    Lee JE; Lee JY; Wilusz J; Tian B; Wilusz CJ
    PLoS One; 2010 Jun; 5(6):e11201. PubMed ID: 20574513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of CUGBP1 targets identifies GU-repeat sequences that mediate rapid mRNA decay.
    Rattenbacher B; Beisang D; Wiesner DL; Jeschke JC; von Hohenberg M; St Louis-Vlasova IA; Bohjanen PR
    Mol Cell Biol; 2010 Aug; 30(16):3970-80. PubMed ID: 20547756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation.
    Beisang D; Reilly C; Bohjanen PR
    Gene; 2014 Oct; 550(1):93-100. PubMed ID: 25123787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Posttranscriptional regulation of gene networks by GU-rich elements and CELF proteins.
    Vlasova IA; Bohjanen PR
    RNA Biol; 2008; 5(4):201-7. PubMed ID: 18971639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells.
    Talwar S; Balasubramanian S; Sundaramurthy S; House R; Wilusz CJ; Kuppuswamy D; D'Silva N; Gillespie MB; Hill EG; Palanisamy V
    RNA Biol; 2013 Feb; 10(2):277-86. PubMed ID: 23324604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1.
    Vlasova IA; Tahoe NM; Fan D; Larsson O; Rattenbacher B; Sternjohn JR; Vasdewani J; Karypis G; Reilly CS; Bitterman PB; Bohjanen PR
    Mol Cell; 2008 Feb; 29(2):263-70. PubMed ID: 18243120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GU-rich RNA: expanding CUGBP1 function, broadening mRNA turnover.
    Kim HH; Gorospe M
    Mol Cell; 2008 Feb; 29(2):151-2. PubMed ID: 18243108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins.
    Wang ET; Ward AJ; Cherone JM; Giudice J; Wang TT; Treacy DJ; Lambert NJ; Freese P; Saxena T; Cooper TA; Burge CB
    Genome Res; 2015 Jun; 25(6):858-71. PubMed ID: 25883322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.
    Xia H; Chen D; Wu Q; Wu G; Zhou Y; Zhang Y; Zhang L
    Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):911-921. PubMed ID: 28733224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of CUG-binding protein 1 (CUGBP1) binding to target transcripts upon T cell activation.
    Beisang D; Rattenbacher B; Vlasova-St Louis IA; Bohjanen PR
    J Biol Chem; 2012 Jan; 287(2):950-60. PubMed ID: 22117072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of RBP Regulation and Co-regulation of mRNA 3' UTR Regions in a Luciferase Reporter System.
    Sternburg EL; Karginov FV
    Methods Mol Biol; 2021; 2170():101-115. PubMed ID: 32797453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression.
    Kajdasz A; Niewiadomska D; Sekrecki M; Sobczak K
    Sci Rep; 2022 Jan; 12(1):190. PubMed ID: 34996980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered CELF1 binding to target transcripts in malignant T cells.
    Bohjanen PR; Moua ML; Guo L; Taye A; Vlasova-St Louis IA
    RNA; 2015 Oct; 21(10):1757-69. PubMed ID: 26249002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1.
    Giudice J; Xia Z; Li W; Cooper TA
    Sci Rep; 2016 Oct; 6():35550. PubMed ID: 27759042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay.
    Lucas BA; Lavi E; Shiue L; Cho H; Katzman S; Miyoshi K; Siomi MC; Carmel L; Ares M; Maquat LE
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):968-973. PubMed ID: 29339519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulatory element in the 3'-untranslated region of human papillomavirus 16 inhibits expression by binding CUG-binding protein 1.
    Goraczniak R; Gunderson SI
    J Biol Chem; 2008 Jan; 283(4):2286-96. PubMed ID: 18042543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional dissection of a conserved destabilizing element of cyclo-oxygenase-2 mRNA: evidence against the involvement of AUF-1 [AU-rich element/poly(U)-binding/degradation factor-1], AUF-2, tristetraprolin, HuR (Hu antigen R) or FBP1 (far-upstream-sequence-element-binding protein 1).
    Sully G; Dean JL; Wait R; Rawlinson L; Santalucia T; Saklatvala J; Clark AR
    Biochem J; 2004 Feb; 377(Pt 3):629-39. PubMed ID: 14594446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamines regulate the stability of activating transcription factor-2 mRNA through RNA-binding protein HuR in intestinal epithelial cells.
    Xiao L; Rao JN; Zou T; Liu L; Marasa BS; Chen J; Turner DJ; Zhou H; Gorospe M; Wang JY
    Mol Biol Cell; 2007 Nov; 18(11):4579-90. PubMed ID: 17804813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global assessment of GU-rich regulatory content and function in the human transcriptome.
    Halees AS; Hitti E; Al-Saif M; Mahmoud L; Vlasova-St Louis IA; Beisang DJ; Bohjanen PR; Khabar K
    RNA Biol; 2011; 8(4):681-91. PubMed ID: 21691152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.