BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21497183)

  • 1. DNA repair in Corynebacterium model.
    Resende BC; Rebelato AB; D'Afonseca V; Santos AR; Stutzman T; Azevedo VA; Santos LL; Miyoshi A; Lopes DO
    Gene; 2011 Aug; 482(1-2):1-7. PubMed ID: 21497183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA repair in reduced genome: the Mycoplasma model.
    Carvalho FM; Fonseca MM; Batistuzzo De Medeiros S; Scortecci KC; Blaha CA; Agnez-Lima LF
    Gene; 2005 Nov; 360(2):111-9. PubMed ID: 16153783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial DNA repair genes and their eukaryotic homologues: 5. The role of recombination in DNA repair and genome stability.
    Nowosielska A
    Acta Biochim Pol; 2007; 54(3):483-94. PubMed ID: 17893749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus.
    Romano V; Napoli A; Salerno V; Valenti A; Rossi M; Ciaramella M
    J Mol Biol; 2007 Jan; 365(4):921-9. PubMed ID: 17113105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA repair in Chromobacterium violaceum.
    Duarte FT; Carvalho FM; Bezerra e Silva U; Scortecci KC; Blaha CA; Agnez-Lima LF; Batistuzzo de Medeiros SR
    Genet Mol Res; 2004 Mar; 3(1):167-80. PubMed ID: 15100997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial DNA repair genes and their eukaryotic homologues: 4. The role of nucleotide excision DNA repair (NER) system in mammalian cells.
    Maddukuri L; Dudzińska D; Tudek B
    Acta Biochim Pol; 2007; 54(3):469-82. PubMed ID: 17893751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome instability and DNA damage accumulation in gene-targeted mice.
    Nordstrand LM; Ringvoll J; Larsen E; Klungland A
    Neuroscience; 2007 Apr; 145(4):1309-17. PubMed ID: 17218062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the DNA repair nucleases Rad13, Rad2 and Uve1 of Schizosaccharomyces pombe in mismatch correction.
    Kunz C; Fleck O
    J Mol Biol; 2001 Oct; 313(2):241-53. PubMed ID: 11800554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [DNA repair pathways and their involvement in human diseases].
    Sandovici I; Buhuşi MC; Stoica O; Covic M
    Rev Med Chir Soc Med Nat Iasi; 2002; 107(2):247-57. PubMed ID: 12638268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genome stability in Corynebacterium species due to lack of the recombinational repair system.
    Nakamura Y; Nishio Y; Ikeo K; Gojobori T
    Gene; 2003 Oct; 317(1-2):149-55. PubMed ID: 14604803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different patterns of evolution for duplicated DNA repair genes in bacteria of the Xanthomonadales group.
    Martins-Pinheiro M; Galhardo RS; Lage C; Lima-Bessa KM; Aires KA; Menck CF
    BMC Evol Biol; 2004 Aug; 4():29. PubMed ID: 15333143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer.
    Mort R; Mo L; McEwan C; Melton DW
    Br J Cancer; 2003 Jul; 89(2):333-7. PubMed ID: 12865926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NER enzymes maintain genome integrity and suppress homologous recombination in the absence of exogenously induced DNA damage in Pseudomonas putida.
    Sidorenko J; Ukkivi K; Kivisaar M
    DNA Repair (Amst); 2015 Jan; 25():15-26. PubMed ID: 25463394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mutL as a genetic switch of bacterial mutability: turned on or off through repeat copy number changes.
    Chen F; Liu WQ; Liu ZH; Zou QH; Wang Y; Li YG; Zhou J; Eisenstark A; Johnston RN; Liu GR; Yang BF; Liu SL
    FEMS Microbiol Lett; 2010 Nov; 312(2):126-32. PubMed ID: 20874753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA repair in Mycobacterium tuberculosis revisited.
    Dos Vultos T; Mestre O; Tonjum T; Gicquel B
    FEMS Microbiol Rev; 2009 May; 33(3):471-87. PubMed ID: 19385996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A global gene evolution analysis on Vibrionaceae family using phylogenetic profile.
    Vitulo N; Vezzi A; Romualdi C; Campanaro S; Valle G
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S23. PubMed ID: 17430568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial DNA repair genes and their eukaryotic homologues: 2. Role of bacterial mutator gene homologues in human disease. Overview of nucleotide pool sanitization and mismatch repair systems.
    Arczewska KD; Kuśmierek JT
    Acta Biochim Pol; 2007; 54(3):435-57. PubMed ID: 17893750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease.
    Krwawicz J; Arczewska KD; Speina E; Maciejewska A; Grzesiuk E
    Acta Biochim Pol; 2007; 54(3):413-34. PubMed ID: 17893748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair.
    Rechkunova NI; Lavrik OI
    Subcell Biochem; 2010; 50():251-77. PubMed ID: 20012586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences.
    Brune I; Brinkrolf K; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2005 Jun; 6():86. PubMed ID: 15938759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.