These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21497442)

  • 41. Sulfur doped anatase TiO2 single crystals with a high percentage of {0 0 1} facets.
    Liu G; Sun C; Smith SC; Wang L; Lu GQ; Cheng HM
    J Colloid Interface Sci; 2010 Sep; 349(2):477-83. PubMed ID: 20656103
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of single-phase anatase nanocrystallites at near room temperatures.
    Daoud WA; Xin JH
    Chem Commun (Camb); 2005 Apr; (16):2110-2. PubMed ID: 15846416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coherent interfaces between crystals in nanocrystal composites.
    Liu H; Zheng Z; Yang D; Ke X; Jaatinen E; Zhao JC; Zhu HY
    ACS Nano; 2010 Oct; 4(10):6219-27. PubMed ID: 20822147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The preparation of Zn2+-doped TiO(2) nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities.
    Liu G; Zhang X; Xu Y; Niu X; Zheng L; Ding X
    Chemosphere; 2005 Jun; 59(9):1367-71. PubMed ID: 15857649
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly stable molecular layers on nanocrystalline anatase TiO2 through photochemical grafting.
    Franking RA; Landis EC; Hamers RJ
    Langmuir; 2009 Sep; 25(18):10676-84. PubMed ID: 19670904
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires.
    Cheng B; Le Y; Yu J
    J Hazard Mater; 2010 May; 177(1-3):971-7. PubMed ID: 20080343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unraveling the Multiple Effects Originating the Increased Oxidative Photoactivity of {001}-Facet Enriched Anatase TiO2.
    Maisano M; Dozzi MV; Coduri M; Artiglia L; Granozzi G; Selli E
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9745-54. PubMed ID: 27019104
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets.
    Shan GB; Demopoulos GP
    Nanotechnology; 2010 Jan; 21(2):025604. PubMed ID: 19955613
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.
    Ghows N; Entezari MH
    Ultrason Sonochem; 2010 Jun; 17(5):878-83. PubMed ID: 20382553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dependence of photocatalytic activity of anatase powders on their crystallinity.
    Inagaki M; Nonaka R; Tryba B; Morawski AW
    Chemosphere; 2006 Jun; 64(3):437-45. PubMed ID: 16406485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonaqueous TiO2 nanoparticle synthesis: a versatile basis for the fabrication of self-supporting, transparent, and UV-absorbing composite films.
    Koziej D; Fischer F; Kränzlin N; Caseri WR; Niederberger M
    ACS Appl Mater Interfaces; 2009 May; 1(5):1097-104. PubMed ID: 20355897
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photocatalytic properties of nanocrystalline titanium dioxide films in the degradation of domoic acid in aqueous solution: potential for use in molluscan shellfish biotoxin depuration facilities.
    Djaoued Y; Robichaud J; Thibodeau M; Balaji S; Tchoukanova N; Bates SS
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Feb; 26(2):248-57. PubMed ID: 19680896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor.
    Nian JN; Teng H
    J Phys Chem B; 2006 Mar; 110(9):4193-8. PubMed ID: 16509714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reactivity of anatase TiO(2) nanoparticles: the role of the minority (001) surface.
    Gong XQ; Selloni A
    J Phys Chem B; 2005 Oct; 109(42):19560-2. PubMed ID: 16853530
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization and photocatalytic activity of vanadium-doped titanium dioxide nanocatalysts.
    Chang PY; Huang CH; Doong RA
    Water Sci Technol; 2009; 59(3):523-30. PubMed ID: 19214007
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures.
    Mao Y; Wong SS
    J Am Chem Soc; 2006 Jun; 128(25):8217-26. PubMed ID: 16787086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of ZnO nanoflowers and their wettabilities and photocatalytic properties.
    Guo X; Zhao Q; Li R; Pan H; Guo X; Yin A; Dai W
    Opt Express; 2010 Aug; 18(17):18401-6. PubMed ID: 20721234
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microwave-induced synthesis of porous single-crystal-like TiO2 with excellent lithium storage properties.
    Zhang D; Wen M; Zhang P; Zhu J; Li G; Li H
    Langmuir; 2012 Mar; 28(9):4543-7. PubMed ID: 22329597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation of TiO2/Ti mesh photoelectrode and properties.
    Liu HL; Li XD; Zhou D; Li XZ; Yue PT
    J Environ Sci (China); 2003 May; 15(3):311-4. PubMed ID: 12938978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and photocatalytic activity of stable nanocrystalline TiO(2) with high crystallinity and large surface area.
    Tian G; Fu H; Jing L; Tian C
    J Hazard Mater; 2009 Jan; 161(2-3):1122-30. PubMed ID: 18524477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.