BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 21497548)

  • 1. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.
    Tirella A; Vozzi F; De Maria C; Vozzi G; Sandri T; Sassano D; Cognolato L; Ahluwalia A
    J Biosci Bioeng; 2011 Jul; 112(1):79-85. PubMed ID: 21497548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of fabrication parameters and substrate stiffness in direct writing of living constructs.
    Tirella A; Ahluwalia A
    Biotechnol Prog; 2012; 28(5):1315-20. PubMed ID: 22736619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosurface engineering through ink jet printing.
    Khan MS; Fon D; Li X; Tian J; Forsythe J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):441-7. PubMed ID: 19879112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet printing for high-throughput cell patterning.
    Roth EA; Xu T; Das M; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2004 Aug; 25(17):3707-15. PubMed ID: 15020146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jet-based methods to print living cells.
    Ringeisen BR; Othon CM; Barron JA; Young D; Spargo BJ
    Biotechnol J; 2006 Sep; 1(9):930-48. PubMed ID: 16895314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system.
    Buyukhatipoglu K; Jo W; Sun W; Clyne AM
    Biofabrication; 2009 Sep; 1(3):035003. PubMed ID: 20811107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.
    Xu T; Zhao W; Zhu JM; Albanna MZ; Yoo JJ; Atala A
    Biomaterials; 2013 Jan; 34(1):130-9. PubMed ID: 23063369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surfactant and gentle agitation on inkjet dispensing of living cells.
    Parsa S; Gupta M; Loizeau F; Cheung KC
    Biofabrication; 2010 Jun; 2(2):025003. PubMed ID: 20811131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoelectric ink jet processing of materials for medical and biological applications.
    Sumerel J; Lewis J; Doraiswamy A; Deravi LF; Sewell SL; Gerdon AE; Wright DW; Narayan RJ
    Biotechnol J; 2006 Sep; 1(9):976-87. PubMed ID: 16941446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization.
    Guillotin B; Souquet A; Catros S; Duocastella M; Pippenger B; Bellance S; Bareille R; Rémy M; Bordenave L; Amédée J; Guillemot F
    Biomaterials; 2010 Oct; 31(28):7250-6. PubMed ID: 20580082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes.
    Xu C; Chai W; Huang Y; Markwald RR
    Biotechnol Bioeng; 2012 Dec; 109(12):3152-60. PubMed ID: 22767299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inkjet printing of viable mammalian cells.
    Xu T; Jin J; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2005 Jan; 26(1):93-9. PubMed ID: 15193884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast flexible ink-jet printing method for patterning dissociated neurons in culture.
    Sanjana NE; Fuller SB
    J Neurosci Methods; 2004 Jul; 136(2):151-63. PubMed ID: 15183267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional inkjet biofabrication based on designed images.
    Arai K; Iwanaga S; Toda H; Genci C; Nishiyama Y; Nakamura M
    Biofabrication; 2011 Sep; 3(3):034113. PubMed ID: 21900730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite.
    Catros S; Fricain JC; Guillotin B; Pippenger B; Bareille R; Remy M; Lebraud E; Desbat B; Amédée J; Guillemot F
    Biofabrication; 2011 Jun; 3(2):025001. PubMed ID: 21527813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.
    Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K
    Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing.
    Saunders RE; Gough JE; Derby B
    Biomaterials; 2008 Jan; 29(2):193-203. PubMed ID: 17936351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible inkjet printing technique for designed seeding of individual living cells.
    Nakamura M; Kobayashi A; Takagi F; Watanabe A; Hiruma Y; Ohuchi K; Iwasaki Y; Horie M; Morita I; Takatani S
    Tissue Eng; 2005; 11(11-12):1658-66. PubMed ID: 16411811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput laser printing of cells and biomaterials for tissue engineering.
    Guillemot F; Souquet A; Catros S; Guillotin B; Lopez J; Faucon M; Pippenger B; Bareille R; Rémy M; Bellance S; Chabassier P; Fricain JC; Amédée J
    Acta Biomater; 2010 Jul; 6(7):2494-500. PubMed ID: 19819356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.