These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21497575)

  • 1. Implications of oxidovanadium(IV) binding to actin.
    Ramos S; Almeida RM; Moura JJ; Aureliano M
    J Inorg Biochem; 2011 Jun; 105(6):777-83. PubMed ID: 21497575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decavanadate interactions with actin: cysteine oxidation and vanadyl formation.
    Ramos S; Duarte RO; Moura JJ; Aureliano M
    Dalton Trans; 2009 Oct; (38):7985-94. PubMed ID: 19771361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances into vanadyl, vanadate and decavanadate interactions with actin.
    Ramos S; Moura JJ; Aureliano M
    Metallomics; 2012 Jan; 4(1):16-22. PubMed ID: 22012168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin as a potential target for decavanadate.
    Ramos S; Moura JJ; Aureliano M
    J Inorg Biochem; 2010 Dec; 104(12):1234-9. PubMed ID: 20807665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.
    Ramos S; Manuel M; Tiago T; Duarte R; Martins J; Gutiérrez-Merino C; Moura JJ; Aureliano M
    J Inorg Biochem; 2006 Nov; 100(11):1734-43. PubMed ID: 16890293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy.
    Heintz D; Kany H; Kalbitzer HR
    Biochemistry; 1996 Oct; 35(39):12686-93. PubMed ID: 8841112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerization, three-dimensional structure and mechanical properties of Ddictyostelium versus rabbit muscle actin filaments.
    Steinmetz MO; Hoenger A; Stoffler D; Noegel AA; Aebi U; Schoenenberger CA
    J Mol Biol; 2000 Oct; 303(2):171-84. PubMed ID: 11023784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationalizing the Decavanadate(V) and Oxidovanadium(IV) Binding to G-Actin and the Competition with Decaniobate(V) and ATP.
    Sciortino G; Aureliano M; Garribba E
    Inorg Chem; 2021 Jan; 60(1):334-344. PubMed ID: 33253559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.
    Tiago T; Aureliano M; Gutiérrez-Merino C
    Biochemistry; 2004 May; 43(18):5551-61. PubMed ID: 15122921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polymerization of actin: extent of polymerization under pressure, volume change of polymerization, and relaxation after temperature jumps.
    Matthews JN; Yim PB; Jacobs DT; Forbes JG; Peters ND; Greer SC
    J Chem Phys; 2005 Aug; 123(7):074904. PubMed ID: 16229617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EXAFS Approach to the Study of Polyoxometalate-Protein Interactions: The Case of Decavanadate-Actin.
    Marques MPM; Gianolio D; Ramos S; Batista de Carvalho LAE; Aureliano M
    Inorg Chem; 2017 Sep; 56(18):10893-10903. PubMed ID: 28858484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species.
    De La Cruz EM; Pollard TD
    Biochemistry; 1996 Nov; 35(45):14054-61. PubMed ID: 8916890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A myosin head can interact with two chemically modified G-actin monomers at ATP-modulated multiple sites.
    Arata T
    Biochemistry; 1996 Dec; 35(50):16061-8. PubMed ID: 8973176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of nonpolymerizable actins with myosin.
    Arata T
    J Biochem; 1991 Feb; 109(2):335-40. PubMed ID: 1864845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel 3-hydroxy-4-pyridinonato oxidovanadium(IV) complexes to investigate structure/activity relationships.
    Rangel M; Amorim MJ; Nunes A; Leite A; Pereira E; de Castro B; Sousa C; Yoshikawa Y; Sakurai H
    J Inorg Biochem; 2009 Apr; 103(4):496-502. PubMed ID: 19195710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of tetramethylrhodaminyl-phalloidin binding to cellular F-actin.
    Cano ML; Cassimeris L; Joyce M; Zigmond SH
    Cell Motil Cytoskeleton; 1992; 21(2):147-58. PubMed ID: 1559266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state.
    Splettstoesser T; Noé F; Oda T; Smith JC
    Proteins; 2009 Aug; 76(2):353-64. PubMed ID: 19156817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of yeast F-actin structure by a mutation in the nucleotide-binding cleft.
    Orlova A; Chen X; Rubenstein PA; Egelman EH
    J Mol Biol; 1997 Aug; 271(2):235-43. PubMed ID: 9268655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue.
    Aureliano M; Henao F; Tiago T; Duarte RO; Moura JJ; Baruah B; Crans DC
    Inorg Chem; 2008 Jul; 47(13):5677-84. PubMed ID: 18510311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model investigations for vanadium-protein interactions: vanadium(III) compounds with dipeptides and their oxovanadium(IV) analogues.
    Tasiopoulos AJ; Tolis EJ; Tsangaris JM; Evangelou A; Woollins D; Slawin AM; Pessoa C; Correia I; Kabanos TA
    J Biol Inorg Chem; 2002 Apr; 7(4-5):363-74. PubMed ID: 11941494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.